Non-nuclear estrogen receptor signaling as a promising therapeutic target to reverse Alzheimer's disease-related autophagy deficits and upregulate the membrane ESR1 and ESR2 which involves DNA methylation-dependent mechanisms.
Bernadeta A Pietrzak-Wawrzyńska, Agnieszka Wnuk, Karolina Przepiórska-Drońska, Andrzej Łach, Małgorzata Kajta
{"title":"Non-nuclear estrogen receptor signaling as a promising therapeutic target to reverse Alzheimer's disease-related autophagy deficits and upregulate the membrane ESR1 and ESR2 which involves DNA methylation-dependent mechanisms.","authors":"Bernadeta A Pietrzak-Wawrzyńska, Agnieszka Wnuk, Karolina Przepiórska-Drońska, Andrzej Łach, Małgorzata Kajta","doi":"10.1016/j.jmb.2025.168982","DOIUrl":null,"url":null,"abstract":"<p><p>Although Alzheimer's disease (AD) affects millions of individuals worldwide, there are currently no effective treatments available. Recent findings have suggested that non-nuclear estrogen receptor (ER) signaling represents promising therapeutic target for central nervous system disorders, offering potential treatments without the significant side effects associated with the activation of nuclear ERs. Because ER signaling deficiency and autophagy impairment have been linked to AD etiology, the present study aimed to selectively target non-nuclear ERs signaling pathways with PaPE-1 and identify autophagy-related mechanisms of neuroprotection in a cellular model of AD. The present study demonstrated that PaPE-1 protected mouse cortical neurons from AD pathology, as evidenced by MAP2-specific labeling. Posttreatment with PaPE-1 reversed the Aβ-evoked decrease in autophagic vesicles, and increased the levels of autophagy-related mRNAs and proteins, accompanied by hypomethylation of the Atg7 gene. Moreover, posttreatment with PaPE-1 increased the levels of membrane fraction receptors ESR1/ERα and ESR2/ERβ, which corresponds to increased Esr1 and Esr2 mRNA expression and DNA hypomethylation of specific genes. In addition to inhibiting DNA methylation of autophagy and ER-related genes, PaPE-1 did not alter global DNA methylation but stimulated HAT activity in Aβ-treated cells. In summary, PaPE-1 promoted neuroprotection against Aβ-induced toxicity that involved stimulation of autophagy, upregulation of membrane ESR1 and ESR2 and decreased DNA methylation of respective genes. The present study proposes a novel therapeutic approach against AD that is based on the selective activation of non-nuclear ER signaling to overcome Aβ-induced autophagy deficits and normalize the epigenetic status of cerebral neurons.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168982"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.168982","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although Alzheimer's disease (AD) affects millions of individuals worldwide, there are currently no effective treatments available. Recent findings have suggested that non-nuclear estrogen receptor (ER) signaling represents promising therapeutic target for central nervous system disorders, offering potential treatments without the significant side effects associated with the activation of nuclear ERs. Because ER signaling deficiency and autophagy impairment have been linked to AD etiology, the present study aimed to selectively target non-nuclear ERs signaling pathways with PaPE-1 and identify autophagy-related mechanisms of neuroprotection in a cellular model of AD. The present study demonstrated that PaPE-1 protected mouse cortical neurons from AD pathology, as evidenced by MAP2-specific labeling. Posttreatment with PaPE-1 reversed the Aβ-evoked decrease in autophagic vesicles, and increased the levels of autophagy-related mRNAs and proteins, accompanied by hypomethylation of the Atg7 gene. Moreover, posttreatment with PaPE-1 increased the levels of membrane fraction receptors ESR1/ERα and ESR2/ERβ, which corresponds to increased Esr1 and Esr2 mRNA expression and DNA hypomethylation of specific genes. In addition to inhibiting DNA methylation of autophagy and ER-related genes, PaPE-1 did not alter global DNA methylation but stimulated HAT activity in Aβ-treated cells. In summary, PaPE-1 promoted neuroprotection against Aβ-induced toxicity that involved stimulation of autophagy, upregulation of membrane ESR1 and ESR2 and decreased DNA methylation of respective genes. The present study proposes a novel therapeutic approach against AD that is based on the selective activation of non-nuclear ER signaling to overcome Aβ-induced autophagy deficits and normalize the epigenetic status of cerebral neurons.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.