LLFormer4D: LiDAR-based lane detection method by temporal feature fusion and sparse transformer

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jun Hu, Chaolu Feng, Haoxiang Jie, Zuotao Ning, Xinyi Zuo, Wei Liu, Xiangyu Wei
{"title":"LLFormer4D: LiDAR-based lane detection method by temporal feature fusion and sparse transformer","authors":"Jun Hu,&nbsp;Chaolu Feng,&nbsp;Haoxiang Jie,&nbsp;Zuotao Ning,&nbsp;Xinyi Zuo,&nbsp;Wei Liu,&nbsp;Xiangyu Wei","doi":"10.1049/cvi2.12338","DOIUrl":null,"url":null,"abstract":"<p>Lane detection is a fundamental problem in autonomous driving, which provides vehicles with essential road information. Despite the attention from scholars and engineers, lane detection based on LiDAR meets challenges such as unsatisfactory detection accuracy and significant computation overhead. In this paper, the authors propose LLFormer4D to overcome these technical challenges by leveraging the strengths of both Convolutional Neural Network and Transformer networks. Specifically, the Temporal Feature Fusion module is introduced to enhance accuracy and robustness by integrating features from multi-frame point clouds. In addition, a sparse Transformer decoder based on Lane Key-point Query is designed, which introduces key-point supervision for each lane line to streamline the post-processing. The authors conduct experiments and evaluate the proposed method on the K-Lane and nuScenes map datasets respectively. The results demonstrate the effectiveness of the presented method, achieving second place with an F1 score of 82.39 and a processing speed of 16.03 Frames Per Seconds on the K-Lane dataset. Furthermore, this algorithm attains the best mAP of 70.66 for lane detection on the nuScenes map dataset.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12338","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12338","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Lane detection is a fundamental problem in autonomous driving, which provides vehicles with essential road information. Despite the attention from scholars and engineers, lane detection based on LiDAR meets challenges such as unsatisfactory detection accuracy and significant computation overhead. In this paper, the authors propose LLFormer4D to overcome these technical challenges by leveraging the strengths of both Convolutional Neural Network and Transformer networks. Specifically, the Temporal Feature Fusion module is introduced to enhance accuracy and robustness by integrating features from multi-frame point clouds. In addition, a sparse Transformer decoder based on Lane Key-point Query is designed, which introduces key-point supervision for each lane line to streamline the post-processing. The authors conduct experiments and evaluate the proposed method on the K-Lane and nuScenes map datasets respectively. The results demonstrate the effectiveness of the presented method, achieving second place with an F1 score of 82.39 and a processing speed of 16.03 Frames Per Seconds on the K-Lane dataset. Furthermore, this algorithm attains the best mAP of 70.66 for lane detection on the nuScenes map dataset.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信