Unraveling Surface Chemistry of SnO2 Through Formation of Charged Oxygen Species and Oxygen Vacancies

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Maliheh Shaban Tameh, Wayne L. Gladfelter, Jason D. Goodpaster
{"title":"Unraveling Surface Chemistry of SnO2 Through Formation of Charged Oxygen Species and Oxygen Vacancies","authors":"Maliheh Shaban Tameh,&nbsp;Wayne L. Gladfelter,&nbsp;Jason D. Goodpaster","doi":"10.1002/qua.70017","DOIUrl":null,"url":null,"abstract":"<p>The ability of SnO<sub>2</sub> surfaces to adsorb and activate oxygen species is essential for designing high-performance gas sensors and catalytic materials. In this study, density functional theory (DFT) calculations are employed to unravel the mechanisms governing oxygen adsorption on SnO<sub>2</sub> (110) surfaces under varying surface conditions, including reduced, defective, and stoichiometric configurations. Our findings indicate various forms of charged oxygen species on the surface. The study reveals the presence of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\mathrm{O}}_2^{2-} $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {\\mathrm{O}}_2^{-} $$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>O</mi>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{O}}^{2-} $$</annotation>\n </semantics></math> on the reduced surface and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\mathrm{O}}_2^{2-} $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>O</mi>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{O}}^{-} $$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>O</mi>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{O}}^{2-} $$</annotation>\n </semantics></math> on the defective and the oxidized surfaces. These charged species are directly linked to the reactivity and sensitivity of SnO<sub>2</sub>-based materials, as they interact with oxygen vacancies to stabilize adsorption configurations and influence electronic states within the band gap. PDOS analyses highlight the electronic interactions between adsorbed oxygen species and surface tin atoms, revealing the formation of hybridized orbitals that contribute to defect states near the Fermi level. These states play an important role in determining the surface reactivity and electronic properties of the material. The interplay between oxygen adsorption and vacancy-induced charge redistribution provides critical insights into the mechanisms driving surface reactivity and performance. By providing a detailed understanding of the electronic and energetic properties of adsorbed oxygen species, this work establishes a theoretical framework for the design and optimization of metal oxide-based materials. The findings are particularly valuable for tailoring the properties of SnO<sub>2</sub>, In<sub>2</sub>O3, and ZnO for applications in gas sensing, catalysis, and related technologies.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70017","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of SnO2 surfaces to adsorb and activate oxygen species is essential for designing high-performance gas sensors and catalytic materials. In this study, density functional theory (DFT) calculations are employed to unravel the mechanisms governing oxygen adsorption on SnO2 (110) surfaces under varying surface conditions, including reduced, defective, and stoichiometric configurations. Our findings indicate various forms of charged oxygen species on the surface. The study reveals the presence of O 2 2 $$ {\mathrm{O}}_2^{2-} $$ , O 2 $$ {\mathrm{O}}_2^{-} $$ , and O 2 $$ {\mathrm{O}}^{2-} $$ on the reduced surface and O 2 2 $$ {\mathrm{O}}_2^{2-} $$ , O $$ {\mathrm{O}}^{-} $$ , and O 2 $$ {\mathrm{O}}^{2-} $$ on the defective and the oxidized surfaces. These charged species are directly linked to the reactivity and sensitivity of SnO2-based materials, as they interact with oxygen vacancies to stabilize adsorption configurations and influence electronic states within the band gap. PDOS analyses highlight the electronic interactions between adsorbed oxygen species and surface tin atoms, revealing the formation of hybridized orbitals that contribute to defect states near the Fermi level. These states play an important role in determining the surface reactivity and electronic properties of the material. The interplay between oxygen adsorption and vacancy-induced charge redistribution provides critical insights into the mechanisms driving surface reactivity and performance. By providing a detailed understanding of the electronic and energetic properties of adsorbed oxygen species, this work establishes a theoretical framework for the design and optimization of metal oxide-based materials. The findings are particularly valuable for tailoring the properties of SnO2, In2O3, and ZnO for applications in gas sensing, catalysis, and related technologies.

Abstract Image

通过形成带电氧种和氧空位揭示二氧化锡的表面化学性质
SnO2表面吸附和活化氧气的能力对于设计高性能气体传感器和催化材料至关重要。在本研究中,密度泛函理论(DFT)计算揭示了在不同表面条件下,包括还原、缺陷和化学计量结构下,SnO2(110)表面上氧气吸附的机制。我们的发现表明,火星表面存在多种形式的带电氧。研究发现o22−$$ {\mathrm{O}}_2^{2-} $$的存在,o2−$$ {\mathrm{O}}_2^{-} $$,还原表面为o2−$$ {\mathrm{O}}^{2-} $$,还原表面为o2−$$ {\mathrm{O}}_2^{2-} $$, O−$$ {\mathrm{O}}^{-} $$,缺陷表面和氧化表面o2−$$ {\mathrm{O}}^{2-} $$。这些带电物质与sno2基材料的反应性和灵敏度直接相关,因为它们与氧空位相互作用以稳定吸附构型并影响带隙内的电子态。PDOS分析强调了吸附氧和表面锡原子之间的电子相互作用,揭示了杂化轨道的形成,这有助于在费米能级附近形成缺陷态。这些态在决定材料的表面反应性和电子性能方面起着重要的作用。氧吸附和空位诱导电荷再分配之间的相互作用为驱动表面反应性和性能的机制提供了重要的见解。通过提供对吸附氧的电子和能量特性的详细了解,本工作为金属氧化物基材料的设计和优化建立了理论框架。这些发现对于调整SnO2、In2O3和ZnO在气体传感、催化和相关技术中的应用具有特别的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信