Michael Lanz, Maurizio Cortada, Yu Lu, Soledad Levano, Daniel Bodmer
{"title":"mTORC2 Regulates Actin Polymerization in Auditory Cells","authors":"Michael Lanz, Maurizio Cortada, Yu Lu, Soledad Levano, Daniel Bodmer","doi":"10.1111/jnc.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Mammalian target of rapamycin complex 2 (mTORC2) is essential for hearing by regulating auditory hair cell structure and function. However, mechanistic details of how mTORC2 regulates intracellular processes in sensory hair cells have not yet been clarified. To further elucidate the role of mTORC2 in auditory cells, we generated a <i>Rictor</i> knockout cell line from HEI-OC1 auditory cells. mTORC2-deficient auditory cells exhibited significant alterations in actin cytoskeleton morphology and decreased proliferation rates. Additionally, we observed a reduction in phosphorylation of protein kinase C alpha (PKCα) and disrupted actin polymerization in mTORC2-deficient cells. Using proteomics, we found that mTORC2 disruption altered expression of cytoskeleton-related proteins in auditory cells. These findings provide valuable mechanistic insights into the functional role of mTORC2 in auditory cells, potentially opening new perspectives to address sensorineural hearing loss.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>\n </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mammalian target of rapamycin complex 2 (mTORC2) is essential for hearing by regulating auditory hair cell structure and function. However, mechanistic details of how mTORC2 regulates intracellular processes in sensory hair cells have not yet been clarified. To further elucidate the role of mTORC2 in auditory cells, we generated a Rictor knockout cell line from HEI-OC1 auditory cells. mTORC2-deficient auditory cells exhibited significant alterations in actin cytoskeleton morphology and decreased proliferation rates. Additionally, we observed a reduction in phosphorylation of protein kinase C alpha (PKCα) and disrupted actin polymerization in mTORC2-deficient cells. Using proteomics, we found that mTORC2 disruption altered expression of cytoskeleton-related proteins in auditory cells. These findings provide valuable mechanistic insights into the functional role of mTORC2 in auditory cells, potentially opening new perspectives to address sensorineural hearing loss.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.