Annulus Fibrosus Repair via Interpenetration of a Non-Woven Scaffold Supports Tissue Integration and Prevents Re-Herniation

IF 3.4 3区 医学 Q1 ORTHOPEDICS
JOR Spine Pub Date : 2025-02-06 DOI:10.1002/jsp2.70045
Esteban D. Ongini, Mohammed Abdullah, Julie B. Engiles, Brianna S. Orozco, Andrea Moehl, Ana Peredo, Sonal Mahindroo, Rachel Hilliard, Thomas P. Schaer, Robert L. Mauck, Harvey E. Smith, Mazda Farshad, Jess G. Snedeker, Sarah E. Gullbrand
{"title":"Annulus Fibrosus Repair via Interpenetration of a Non-Woven Scaffold Supports Tissue Integration and Prevents Re-Herniation","authors":"Esteban D. Ongini,&nbsp;Mohammed Abdullah,&nbsp;Julie B. Engiles,&nbsp;Brianna S. Orozco,&nbsp;Andrea Moehl,&nbsp;Ana Peredo,&nbsp;Sonal Mahindroo,&nbsp;Rachel Hilliard,&nbsp;Thomas P. Schaer,&nbsp;Robert L. Mauck,&nbsp;Harvey E. Smith,&nbsp;Mazda Farshad,&nbsp;Jess G. Snedeker,&nbsp;Sarah E. Gullbrand","doi":"10.1002/jsp2.70045","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Current surgical management of intervertebral disc herniation often fails to adequately address the risk of recurrence, primarily due to the disc's limited regenerative capacity. Regenerative, biomaterial-based approaches for tissue augmentation, while showing preclinical promise, have consistently failed to meet the extreme mechanical demands of the intervertebral disc, impeding their clinical translation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this study, we introduce a novel annulus repair strategy that employs the mechanical interpenetration of a non-woven PET scaffold into intervertebral disc tissue to resist reherniation. We investigate the efficacy in preventing herniations under compression using a bovine explant model and validate its performance in a pilot in vivo study in a goat cervical spine injury model. Healing and scaffold integration are assessed over 4 weeks using computed tomography, magnetic resonance imaging, and histopathology.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We demonstrate that this approach effectively prevents mechanically induced herniation. In vivo, the scaffold interpenetration enables biological integration at 4 weeks post-surgery, with no evidence of scaffold migration or disc degeneration. The scaffold supports matrix deposition and cell infiltration, with no observed endplate pathologies or osteolysis.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>These findings highlight a promising combination of biomechanical reliability and favorable histological outcomes, underscoring the potential of this technology for advancing toward human clinical applications.</p>\n </section>\n </div>","PeriodicalId":14876,"journal":{"name":"JOR Spine","volume":"8 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsp2.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOR Spine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsp2.70045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Current surgical management of intervertebral disc herniation often fails to adequately address the risk of recurrence, primarily due to the disc's limited regenerative capacity. Regenerative, biomaterial-based approaches for tissue augmentation, while showing preclinical promise, have consistently failed to meet the extreme mechanical demands of the intervertebral disc, impeding their clinical translation.

Methods

In this study, we introduce a novel annulus repair strategy that employs the mechanical interpenetration of a non-woven PET scaffold into intervertebral disc tissue to resist reherniation. We investigate the efficacy in preventing herniations under compression using a bovine explant model and validate its performance in a pilot in vivo study in a goat cervical spine injury model. Healing and scaffold integration are assessed over 4 weeks using computed tomography, magnetic resonance imaging, and histopathology.

Results

We demonstrate that this approach effectively prevents mechanically induced herniation. In vivo, the scaffold interpenetration enables biological integration at 4 weeks post-surgery, with no evidence of scaffold migration or disc degeneration. The scaffold supports matrix deposition and cell infiltration, with no observed endplate pathologies or osteolysis.

Conclusions

These findings highlight a promising combination of biomechanical reliability and favorable histological outcomes, underscoring the potential of this technology for advancing toward human clinical applications.

Abstract Image

通过非织造支架的互穿修复纤维环,支持组织整合并防止再次疝出
背景目前椎间盘突出症的外科治疗往往不能充分解决复发的风险,主要是由于椎间盘的再生能力有限。再生的、基于生物材料的组织增强方法,虽然显示出临床前的希望,但一直未能满足椎间盘的极端机械要求,阻碍了它们的临床应用。方法在本研究中,我们介绍了一种新的环修复策略,该策略采用非织造PET支架机械渗透到椎间盘组织中以防止再突出。我们使用牛外植体模型研究其在防止压迫下疝出的功效,并在山羊颈椎损伤模型的试点体内研究中验证其性能。通过计算机断层扫描、磁共振成像和组织病理学评估4周后的愈合和支架整合情况。结果我们证明这种方法可以有效地防止机械诱发的疝。在体内,手术后4周,支架相互渗透使生物整合,没有支架迁移或椎间盘退变的证据。支架支持基质沉积和细胞浸润,未观察到终板病理或骨溶解。这些发现强调了生物力学可靠性和良好组织学结果的良好结合,强调了该技术在人类临床应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOR Spine
JOR Spine ORTHOPEDICS-
CiteScore
6.40
自引率
18.90%
发文量
42
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信