{"title":"Assessing Soil Quality and Biomass Productivity Under Wastewater Irrigation in the Indian Arid Region","authors":"Genda Singh, Prem Raj Nagora, Parul Haksar, Shubhi Kulshrestha, Abha Rani","doi":"10.1002/tqem.70051","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Indiscriminate discharge of effluents in rivers, waterbodies, and croplands is a common practice contaminating food chains through water and soil. Plantations using treated wastewater can help restore degraded lands and reduce soil and environmental pollution. One-year-old plantations of <i>Azadirachta indica, Eucalyptus camaldulensis, Prosopis cineraria, Prosopis juliflora, Tamarix aphylla, Salvadora persica</i>, and <i>Salvadora oleoides</i> were irrigated with borewell water at ½ET (Evapotranspiration, I<sub>1</sub>) and treated wastewater at ½ET (I<sub>2</sub>), ¾ET (I<sub>3</sub>), and 1ET (I<sub>4</sub>) for 4 years (September 2013–September 2017), to assess the remedial impact of these species on soils while reusing wastewater in urban greening and biomass production. Wastewater irrigation enhanced soil pH/EC (<1.0 unit) and SOC and nutrient contents (1.23–13.25-fold). Such increases were highest (<i>p</i> < 0.05) in 0–15 cm and lowest in 45–60 cm (50%–70%) soil layers. Species types and irrigation levels influenced soil salts and nutrient concentrations. Variations in pH/EC (<0.50 unit), SOC/nutrient contents (1.59–2.11-fold), and total biomass (3.26-fold) were greater between species than between irrigation levels (<0.30 unit, 1.14–3.33-fold and 1.81-fold variations, respectively). Salt and nutrient uptake were highest in <i>S. oleoides</i> and <i>P. cineraria</i>, medium in <i>T. aphylla</i> and <i>E. camaldulensis</i>, and lowest in <i>S. persica</i>, <i>A. indica</i>, and <i>P. juliflora</i> plots. Leaf mineral contents were below toxic levels. The former three species and <i>S. persica</i> responded by increasing biomass allocation to roots. In contrast, other species maximized root biomass to augment added water and nutrient uptake to sustain growing biomass. Conclusively, tree species influenced soil properties and biomass more notably than irrigation level, where adaptation mechanisms were allocated to/or maximized root biomass. Increased SOC and nutrients, and consequently plant biomass highlight the reuse of treated wastewater in plantations that remediated soil and promoted greenery and biomass in water-deficient dry areas.</p>\n </div>","PeriodicalId":35327,"journal":{"name":"Environmental Quality Management","volume":"34 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Quality Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tqem.70051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Indiscriminate discharge of effluents in rivers, waterbodies, and croplands is a common practice contaminating food chains through water and soil. Plantations using treated wastewater can help restore degraded lands and reduce soil and environmental pollution. One-year-old plantations of Azadirachta indica, Eucalyptus camaldulensis, Prosopis cineraria, Prosopis juliflora, Tamarix aphylla, Salvadora persica, and Salvadora oleoides were irrigated with borewell water at ½ET (Evapotranspiration, I1) and treated wastewater at ½ET (I2), ¾ET (I3), and 1ET (I4) for 4 years (September 2013–September 2017), to assess the remedial impact of these species on soils while reusing wastewater in urban greening and biomass production. Wastewater irrigation enhanced soil pH/EC (<1.0 unit) and SOC and nutrient contents (1.23–13.25-fold). Such increases were highest (p < 0.05) in 0–15 cm and lowest in 45–60 cm (50%–70%) soil layers. Species types and irrigation levels influenced soil salts and nutrient concentrations. Variations in pH/EC (<0.50 unit), SOC/nutrient contents (1.59–2.11-fold), and total biomass (3.26-fold) were greater between species than between irrigation levels (<0.30 unit, 1.14–3.33-fold and 1.81-fold variations, respectively). Salt and nutrient uptake were highest in S. oleoides and P. cineraria, medium in T. aphylla and E. camaldulensis, and lowest in S. persica, A. indica, and P. juliflora plots. Leaf mineral contents were below toxic levels. The former three species and S. persica responded by increasing biomass allocation to roots. In contrast, other species maximized root biomass to augment added water and nutrient uptake to sustain growing biomass. Conclusively, tree species influenced soil properties and biomass more notably than irrigation level, where adaptation mechanisms were allocated to/or maximized root biomass. Increased SOC and nutrients, and consequently plant biomass highlight the reuse of treated wastewater in plantations that remediated soil and promoted greenery and biomass in water-deficient dry areas.
期刊介绍:
Four times a year, this practical journal shows you how to improve environmental performance and exceed voluntary standards such as ISO 14000. In each issue, you"ll find in-depth articles and the most current case studies of successful environmental quality improvement efforts -- and guidance on how you can apply these goals to your organization. Written by leading industry experts and practitioners, Environmental Quality Management brings you innovative practices in Performance Measurement...Life-Cycle Assessments...Safety Management... Environmental Auditing...ISO 14000 Standards and Certification..."Green Accounting"...Environmental Communication...Sustainable Development Issues...Environmental Benchmarking...Global Environmental Law and Regulation.