Paula Silva Lacerda Almeida, Dayana Araújo, Juliana Minardi Nascimento, Alex C. Manhães, Nilson Ramires Jesus, Joice Stipursky
{"title":"Prenatal Alcohol Consumption Alters Protein Fingerprint in Umbilical Cord Blood Serum and Induces Brain Microvascular Endothelial Cell Dysfunction","authors":"Paula Silva Lacerda Almeida, Dayana Araújo, Juliana Minardi Nascimento, Alex C. Manhães, Nilson Ramires Jesus, Joice Stipursky","doi":"10.1111/jnc.70015","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Consumption of alcoholic beverages during pregnancy is directly related to the establishment of fetal alcohol spectrum disorders (FASD), which includes craniofacial changes, body growth restriction, and neurodevelopment impairments. Proper functioning of the central nervous system (CNS) depends on blood–brain barrier (BBB) development, which is formed by interactions of vascular endothelial cells, pericytes, astrocytes, and basal lamina. Gestational exposure to ethanol has been demonstrated to impair CNS development; however, little is known about ethanol modulation of blood circulating factors and impacts on human developing BBB. Here we investigated the prevalence of alcohol consumption during pregnancy and found that 27% of pregnant women reported alcohol consumption, mainly in the first trimester. Control and alcohol-exposed newborns showed no differences in weight, length, and appearance, pulse, grimace, activity, respiration (APGAR) score at birth. In vitro, we cultivated human brain microcapillary endothelial cells (HBMEC) and treated with umbilical cord blood serum (UCBS) from control (S-Control) newborns or ethanol-exposed ones (S-Ethanol). S-Ethanol treatment induced 68% and 38% decreases in protein levels of ZO-1 (tight junction) and GLUT-1 (glucose transporter type-1), respectively, increased endothelial monolayer permeability, migratory potential impairment, and changes in angiogenesis-related secreted proteins profile, compared to S-Control treatments. UCBS proteomics revealed a total of 392 proteins, 10 exclusively found in S-Ethanol, mostly related to innate and adaptive immunity and tissue injury response. These results suggest that gestational exposure to ethanol contributes to blood altered protein profiles triggering BBB endothelial.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>\n </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70015","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Consumption of alcoholic beverages during pregnancy is directly related to the establishment of fetal alcohol spectrum disorders (FASD), which includes craniofacial changes, body growth restriction, and neurodevelopment impairments. Proper functioning of the central nervous system (CNS) depends on blood–brain barrier (BBB) development, which is formed by interactions of vascular endothelial cells, pericytes, astrocytes, and basal lamina. Gestational exposure to ethanol has been demonstrated to impair CNS development; however, little is known about ethanol modulation of blood circulating factors and impacts on human developing BBB. Here we investigated the prevalence of alcohol consumption during pregnancy and found that 27% of pregnant women reported alcohol consumption, mainly in the first trimester. Control and alcohol-exposed newborns showed no differences in weight, length, and appearance, pulse, grimace, activity, respiration (APGAR) score at birth. In vitro, we cultivated human brain microcapillary endothelial cells (HBMEC) and treated with umbilical cord blood serum (UCBS) from control (S-Control) newborns or ethanol-exposed ones (S-Ethanol). S-Ethanol treatment induced 68% and 38% decreases in protein levels of ZO-1 (tight junction) and GLUT-1 (glucose transporter type-1), respectively, increased endothelial monolayer permeability, migratory potential impairment, and changes in angiogenesis-related secreted proteins profile, compared to S-Control treatments. UCBS proteomics revealed a total of 392 proteins, 10 exclusively found in S-Ethanol, mostly related to innate and adaptive immunity and tissue injury response. These results suggest that gestational exposure to ethanol contributes to blood altered protein profiles triggering BBB endothelial.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.