Optical Flow-Based Structural Anomaly Detection in Seismic Events From Video Data Combined With Computational Cost Reduction Through Deep Learning

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Sifan Wang, Taisei Saida, Mayuko Nishio
{"title":"Optical Flow-Based Structural Anomaly Detection in Seismic Events From Video Data Combined With Computational Cost Reduction Through Deep Learning","authors":"Sifan Wang,&nbsp;Taisei Saida,&nbsp;Mayuko Nishio","doi":"10.1155/stc/4702519","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study presents a novel approach for anomaly event detection in large-scale civil structures by integrating transfer learning (TL) techniques with extended node strength network analysis based on video data. By leveraging TL with BEiT + UPerNet pretrained models, the method identifies structural Region-of-Uninterest (RoU), such as windows and doors. Following this identification, the extended node strength network uses rich visual information from the video data, concentrating on structural components to detect disturbances in the nonlinearity vector field within these components. The proposed framework provides a comprehensive solution for anomaly detection, achieving high accuracy and reliability in identifying deviations from normal behavior. The approach was validated through two large-scale structural shaking table tests, which included both pronounced shear cracks and tiny cracks. The detection and quantitative analysis results demonstrated the effectiveness and robustness of the method in detecting varying degrees of anomalies in civil structural components. Additionally, the integration of TL techniques improved computational efficiency by approximately 10%, with a positive correlation observed between this efficiency gain and the proportion of structural RoUs in the video. This study advances anomaly detection in large-scale structures, offering a promising approach to enhancing safety and maintenance practices in critical infrastructure.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/4702519","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/4702519","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel approach for anomaly event detection in large-scale civil structures by integrating transfer learning (TL) techniques with extended node strength network analysis based on video data. By leveraging TL with BEiT + UPerNet pretrained models, the method identifies structural Region-of-Uninterest (RoU), such as windows and doors. Following this identification, the extended node strength network uses rich visual information from the video data, concentrating on structural components to detect disturbances in the nonlinearity vector field within these components. The proposed framework provides a comprehensive solution for anomaly detection, achieving high accuracy and reliability in identifying deviations from normal behavior. The approach was validated through two large-scale structural shaking table tests, which included both pronounced shear cracks and tiny cracks. The detection and quantitative analysis results demonstrated the effectiveness and robustness of the method in detecting varying degrees of anomalies in civil structural components. Additionally, the integration of TL techniques improved computational efficiency by approximately 10%, with a positive correlation observed between this efficiency gain and the proportion of structural RoUs in the video. This study advances anomaly detection in large-scale structures, offering a promising approach to enhancing safety and maintenance practices in critical infrastructure.

Abstract Image

基于光流的视频地震事件结构异常检测与深度学习降低计算成本
将迁移学习技术与基于视频数据的扩展节点强度网络分析相结合,提出了一种大型土木结构异常事件检测的新方法。通过利用TL与BEiT + UPerNet预训练模型,该方法识别结构的无兴趣区域(RoU),如窗户和门。在此识别之后,扩展节点强度网络利用来自视频数据的丰富视觉信息,专注于结构组件来检测这些组件内非线性向量场中的干扰。该框架为异常检测提供了全面的解决方案,在识别偏离正常行为方面具有较高的准确性和可靠性。通过两个大型结构振动台试验验证了该方法的有效性,其中包括明显剪切裂缝和微小裂缝。检测和定量分析结果证明了该方法在检测土木结构构件不同程度异常方面的有效性和鲁棒性。此外,TL技术的集成将计算效率提高了约10%,并且在这种效率增益与视频中结构RoUs的比例之间观察到正相关。该研究推进了大型结构的异常检测,为加强关键基础设施的安全和维护实践提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信