{"title":"Chemical weathering in Manas River Basin: Driven by sulfuric acid or carbonic acid?","authors":"Jiaxin Zhang, Bingqi Zhu","doi":"10.1007/s11631-024-00737-8","DOIUrl":null,"url":null,"abstract":"<div><p>Carbonic acid produced by the dissolution of atmospheric and soil CO<sub>2</sub> in water is usually the most dominant catalyst for chemical weathering, but a sulfuric acid-driven phenomenon, different from usual, was found in the orogenic belt watersheds dominated by silicate bedrock. This study, rooted in comprehensive field investigations in the Manas River Basin (MRB) north of the Tianshan Mountains, delves into the mechanisms and impacts of sulfuric and carbonic acid as catalysts driving different types of chemical weathering in the Central Asian Orogenic Belt. Quantitative analyses elucidate that carbonate weathering constitutes 52.4% of the total chemical weathering, while silicate and evaporite account for 18.6% and 25.3%, respectively, with anthropogenic activities and atmospheric precipitation having little effect. The estimated total chemical weathering rate in MRB is approximately 0.075 × 10<sup>6</sup> mol/km<sup>2</sup>/year. Quantitative findings further suggest that, preceding carbonate precipitation (< 10<sup>4</sup> year), chemical weathering can absorb CO<sub>2</sub>. Subsequently, and following carbonate precipitation (10<sup>4</sup>–10<sup>7</sup> year), it will release CO<sub>2</sub>. The release significantly surpasses the global average CO<sub>2</sub> consumption, contributing to a noteworthy climate impact. This study underscores the distinctive weathering mechanisms, wherein sulfuric acid emerges as the predominant catalyst. The quantity of sulfuric acid as a catalyst is approximately three times that of carbonic acid. Sulfuric acid-driven carbonate rock weathering (SCW) is identified as the sole chemical weathering type with a net CO<sub>2</sub> release effect. SCW CO<sub>2</sub> release flux (5176 mol/km<sup>2</sup>/year) is roughly 2.5 times the CO<sub>2</sub> absorption by Ca–Mg silicate weathering, highlighting the pivotal role of chemical weathering in sourcing atmospheric CO<sub>2</sub> over the timescales of carbonate precipitation and sulfate reduction. Lastly, this study posits that catalyst and transport limitations are the most plausible critical factors in MRB. The interplay between sulfuric acid and dissolved CO<sub>2</sub> competitively shapes the types and rates of chemical weathering reactions.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 1","pages":"59 - 85"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geochimica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11631-024-00737-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Carbonic acid produced by the dissolution of atmospheric and soil CO2 in water is usually the most dominant catalyst for chemical weathering, but a sulfuric acid-driven phenomenon, different from usual, was found in the orogenic belt watersheds dominated by silicate bedrock. This study, rooted in comprehensive field investigations in the Manas River Basin (MRB) north of the Tianshan Mountains, delves into the mechanisms and impacts of sulfuric and carbonic acid as catalysts driving different types of chemical weathering in the Central Asian Orogenic Belt. Quantitative analyses elucidate that carbonate weathering constitutes 52.4% of the total chemical weathering, while silicate and evaporite account for 18.6% and 25.3%, respectively, with anthropogenic activities and atmospheric precipitation having little effect. The estimated total chemical weathering rate in MRB is approximately 0.075 × 106 mol/km2/year. Quantitative findings further suggest that, preceding carbonate precipitation (< 104 year), chemical weathering can absorb CO2. Subsequently, and following carbonate precipitation (104–107 year), it will release CO2. The release significantly surpasses the global average CO2 consumption, contributing to a noteworthy climate impact. This study underscores the distinctive weathering mechanisms, wherein sulfuric acid emerges as the predominant catalyst. The quantity of sulfuric acid as a catalyst is approximately three times that of carbonic acid. Sulfuric acid-driven carbonate rock weathering (SCW) is identified as the sole chemical weathering type with a net CO2 release effect. SCW CO2 release flux (5176 mol/km2/year) is roughly 2.5 times the CO2 absorption by Ca–Mg silicate weathering, highlighting the pivotal role of chemical weathering in sourcing atmospheric CO2 over the timescales of carbonate precipitation and sulfate reduction. Lastly, this study posits that catalyst and transport limitations are the most plausible critical factors in MRB. The interplay between sulfuric acid and dissolved CO2 competitively shapes the types and rates of chemical weathering reactions.
期刊介绍:
Acta Geochimica serves as the international forum for essential research on geochemistry, the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth‘s crust, its oceans and the entire Solar System, as well as a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. The journal focuses on, but is not limited to the following aspects:
• Cosmochemistry
• Mantle Geochemistry
• Ore-deposit Geochemistry
• Organic Geochemistry
• Environmental Geochemistry
• Computational Geochemistry
• Isotope Geochemistry
• NanoGeochemistry
All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Acta Geochimica publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of geochemistry.