A Strategy to Minimize the Chlorophyll Content in the Phenolic Extract of Sugar Beet Leaves: Can this Extract Work as a Natural Antioxidant in Vegetable Oils?

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Peyman Ebrahimi, Ipek Bayram, Dasha Mihaylova, Anna Lante
{"title":"A Strategy to Minimize the Chlorophyll Content in the Phenolic Extract of Sugar Beet Leaves: Can this Extract Work as a Natural Antioxidant in Vegetable Oils?","authors":"Peyman Ebrahimi,&nbsp;Ipek Bayram,&nbsp;Dasha Mihaylova,&nbsp;Anna Lante","doi":"10.1007/s11947-024-03601-y","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of chlorophylls in phenolic extracts may limit their use in food products due to undesirable coloration. This project seeks to minimize the co-extraction of chlorophylls during the ultrasonic-assisted extraction (UAE) of polyphenols from sugar beet leaves (SBLs) by optimizing the extraction condition using response surface methodology (RSM). Optimization aimed to minimize the chlorophyll yield (CY) of the extraction while maximizing the total phenolic content (TPC) and total flavonoid content (TFC) with the lowest possible amount of sample. Optimized extraction parameters were 25% ethanol as solvent, 8 min extraction time, and 3.98% (w/v) solid:liquid ratio. The experimental values at optimized condition were 11.49 ± 0.66 mmol gallic acid equivalent (GAE)/L TPC, 2.09 ± 0.06 mmol quercetin equivalent/L TFC, and 0.05 ± 0.01 mg/g CY. In the optimized extract, the ferric reducing antioxidant power (FRAP) was 3.16 ± 0.25 mmol trolox equivalent/L, and <i>trans</i>-ferulic acid had the highest concentration (123.39 ± 4.13 µmol/L) among the detected phenolic compounds. The optimized extract, at a phenolic concentration of 300 µmol GAE/L, chelated cupric and ferrous ions by 48.95 ± 1.06%, and 66.18 ± 1.31%, respectively. Adding the optimized extract to vegetable oils increased their oxidative stability significantly (<i>p</i> &lt; 0.05). The antioxidant activity index of the optimized extract in all the cases was comparable to butylated hydroxytoluene (BHT), confirming that the obtained extract could be a reliable substitute for synthetic antioxidants. The results of this study are important in enhancing the utilization of extracts recovered from food by-products in the food industry.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"18 3","pages":"2493 - 2506"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11947-024-03601-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11947-024-03601-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of chlorophylls in phenolic extracts may limit their use in food products due to undesirable coloration. This project seeks to minimize the co-extraction of chlorophylls during the ultrasonic-assisted extraction (UAE) of polyphenols from sugar beet leaves (SBLs) by optimizing the extraction condition using response surface methodology (RSM). Optimization aimed to minimize the chlorophyll yield (CY) of the extraction while maximizing the total phenolic content (TPC) and total flavonoid content (TFC) with the lowest possible amount of sample. Optimized extraction parameters were 25% ethanol as solvent, 8 min extraction time, and 3.98% (w/v) solid:liquid ratio. The experimental values at optimized condition were 11.49 ± 0.66 mmol gallic acid equivalent (GAE)/L TPC, 2.09 ± 0.06 mmol quercetin equivalent/L TFC, and 0.05 ± 0.01 mg/g CY. In the optimized extract, the ferric reducing antioxidant power (FRAP) was 3.16 ± 0.25 mmol trolox equivalent/L, and trans-ferulic acid had the highest concentration (123.39 ± 4.13 µmol/L) among the detected phenolic compounds. The optimized extract, at a phenolic concentration of 300 µmol GAE/L, chelated cupric and ferrous ions by 48.95 ± 1.06%, and 66.18 ± 1.31%, respectively. Adding the optimized extract to vegetable oils increased their oxidative stability significantly (p < 0.05). The antioxidant activity index of the optimized extract in all the cases was comparable to butylated hydroxytoluene (BHT), confirming that the obtained extract could be a reliable substitute for synthetic antioxidants. The results of this study are important in enhancing the utilization of extracts recovered from food by-products in the food industry.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food and Bioprocess Technology
Food and Bioprocess Technology 农林科学-食品科技
CiteScore
9.50
自引率
19.60%
发文量
200
审稿时长
2.8 months
期刊介绍: Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community. The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信