Sustainable PV-hydrogen-storage microgrid energy management using a hierarchical economic model predictive control framework

Q2 Energy
Xinyu Guo, Faying Gu, Hongxu Liu, Yongcheng Yu, Runjie Li, Juan Wang
{"title":"Sustainable PV-hydrogen-storage microgrid energy management using a hierarchical economic model predictive control framework","authors":"Xinyu Guo,&nbsp;Faying Gu,&nbsp;Hongxu Liu,&nbsp;Yongcheng Yu,&nbsp;Runjie Li,&nbsp;Juan Wang","doi":"10.1186/s42162-025-00482-z","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen-based renewable microgrid is considered as a prospective technique in power generation to reduce the carbon footprint, combat climate change and promote renewable energy sources integration. The photovoltaic-hydrogen-storage (PHS) microgrid system cleverly integrates renewable clean energy and hydrogen storage, providing a sustainable solution that maximizes the solar energy utilization. However, the changeable weather conditions and fluid market make it challenging to manage energy balance of the system. Moreover, in view of the fact that the existing energy management systems often ignore the dynamic synergy of microgrids, a hierarchical economic model predictive control (HEMPC) framework is proposed to realize the optimal operation of PHS microgrid. First, a precise nonlinear model of the PHS microgrid is established and the logic variables are introduced to capture the hydrogen devices’ short-term properties, i.e., the start-up/shut-down of electrolyzers and fuel cells. Then a comprehensive economic cost function, including internal power demand tracking cost, system operation cost and contract deviation cost, is considered in the proposed two-level HEMPC framework in order to address challenges such as fluctuating weather conditions, dynamic market environments, and the often-overlooked dynamic synergy of microgrid components. Under the proposed framework, a mixed-integer nonlinear optimization problem is solved by the long-term EMPC in the upper level to regulate the start-up/shut-down of hydrogen devices and the state of charge in the battery, and the short-term EMPC in the lower level reoptimizes the power demand tracking cost while tracking the optimal reference signal from the long-term EMPC, thereby improving overall control system efficiency. The simulation results along with qualitative and quantitative analysis show that compared with rule-based control, the proposed HEMPC is effective in managing the equipment power output, realizing dynamic synergy and enhancing the economic performance.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00482-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00482-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen-based renewable microgrid is considered as a prospective technique in power generation to reduce the carbon footprint, combat climate change and promote renewable energy sources integration. The photovoltaic-hydrogen-storage (PHS) microgrid system cleverly integrates renewable clean energy and hydrogen storage, providing a sustainable solution that maximizes the solar energy utilization. However, the changeable weather conditions and fluid market make it challenging to manage energy balance of the system. Moreover, in view of the fact that the existing energy management systems often ignore the dynamic synergy of microgrids, a hierarchical economic model predictive control (HEMPC) framework is proposed to realize the optimal operation of PHS microgrid. First, a precise nonlinear model of the PHS microgrid is established and the logic variables are introduced to capture the hydrogen devices’ short-term properties, i.e., the start-up/shut-down of electrolyzers and fuel cells. Then a comprehensive economic cost function, including internal power demand tracking cost, system operation cost and contract deviation cost, is considered in the proposed two-level HEMPC framework in order to address challenges such as fluctuating weather conditions, dynamic market environments, and the often-overlooked dynamic synergy of microgrid components. Under the proposed framework, a mixed-integer nonlinear optimization problem is solved by the long-term EMPC in the upper level to regulate the start-up/shut-down of hydrogen devices and the state of charge in the battery, and the short-term EMPC in the lower level reoptimizes the power demand tracking cost while tracking the optimal reference signal from the long-term EMPC, thereby improving overall control system efficiency. The simulation results along with qualitative and quantitative analysis show that compared with rule-based control, the proposed HEMPC is effective in managing the equipment power output, realizing dynamic synergy and enhancing the economic performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信