Assessing the impact of climate change on dissolved oxygen using a flow field ecosystem model that takes into account the anaerobic and aerobic environment of bottom sediments

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Jinichi Koue
{"title":"Assessing the impact of climate change on dissolved oxygen using a flow field ecosystem model that takes into account the anaerobic and aerobic environment of bottom sediments","authors":"Jinichi Koue","doi":"10.1007/s11631-024-00711-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the potential impacts of climate change on Lake Biwa, Japan’s largest freshwater lake, with a focus on temperature, wind speed, and precipitation variations. Leveraging data from the IPCC Sixth Assessment Report, including CCP scenarios, projecting a significant temperature rise of 3.3–5.7 °C in the case of very high GHG emission power, the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa. Through a one-dimensional model incorporating sediment redox reactions, various scenarios where air temperature and wind speed are changed are simulated. It is revealed that a 5 °C increase in air temperature leads to decreasing 1–2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer, while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen levels. Moreover, doubling wind speed enhances surface layer oxygen but diminishes it in deeper layers due to increased mixing. Seasonal variations in wind effects are noted, with significant surface layer oxygen increases from 0.4 to 0.8 mg/L during summer to autumn, increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertical mixing. This phenomenon impacts the lake’s oxygen cycle year-round. In contrast, precipitation changes show limited impact on oxygen levels, suggesting minor influence compared to other meteorological factors. The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors for accurate predictions of future water conditions. A holistic approach integrating nutrient levels, water temperature, and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources, particularly in addressing precipitation variations.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 1","pages":"11 - 22"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11631-024-00711-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geochimica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11631-024-00711-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the potential impacts of climate change on Lake Biwa, Japan’s largest freshwater lake, with a focus on temperature, wind speed, and precipitation variations. Leveraging data from the IPCC Sixth Assessment Report, including CCP scenarios, projecting a significant temperature rise of 3.3–5.7 °C in the case of very high GHG emission power, the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa. Through a one-dimensional model incorporating sediment redox reactions, various scenarios where air temperature and wind speed are changed are simulated. It is revealed that a 5 °C increase in air temperature leads to decreasing 1–2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer, while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen levels. Moreover, doubling wind speed enhances surface layer oxygen but diminishes it in deeper layers due to increased mixing. Seasonal variations in wind effects are noted, with significant surface layer oxygen increases from 0.4 to 0.8 mg/L during summer to autumn, increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertical mixing. This phenomenon impacts the lake’s oxygen cycle year-round. In contrast, precipitation changes show limited impact on oxygen levels, suggesting minor influence compared to other meteorological factors. The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors for accurate predictions of future water conditions. A holistic approach integrating nutrient levels, water temperature, and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources, particularly in addressing precipitation variations.

利用流场生态系统模型评估气候变化对溶解氧的影响,该模型考虑了底部沉积物的厌氧和好氧环境
本研究考察了气候变化对日本最大的淡水湖琵琶湖的潜在影响,重点关注了温度、风速和降水变化。利用IPCC第六次评估报告中的数据,包括CCP情景,预测在温室气体排放功率非常高的情况下,温度将显著上升3.3-5.7°C,该研究调查了这些变化如何影响琵琶湖的溶解氧水平。通过包含沉积物氧化还原反应的一维模型,模拟了气温和风速变化的各种情况。结果表明,气温每升高5℃,表层向底层溶解氧浓度会降低1 ~ 2 mg/L,而气温每降低1 ~ 3 mg/L,溶解氧浓度会升高1 ~ 3 mg/L。此外,风速加倍会增加表层氧气,但由于混合增加,深层氧气会减少。风效应的季节变化显著,夏季至秋季表层氧由0.4 ~ 0.8 mg/L增加,秋季至冬季表层氧由0.4 ~ 0.8 mg/L增加。这种现象全年影响着湖泊的氧气循环。相比之下,降水变化对氧含量的影响有限,与其他气象因素相比影响较小。该研究表明,为了准确预测未来的水条件,有必要建立综合的三维模型,考虑湖泊特定的地理因素。综合营养水平、水温和河流流入的整体方法对于琵琶湖水资源的可持续管理至关重要,特别是在解决降水变化方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geochimica
Acta Geochimica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
2.80
自引率
6.20%
发文量
1134
期刊介绍: Acta Geochimica serves as the international forum for essential research on geochemistry, the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth‘s crust, its oceans and the entire Solar System, as well as a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. The journal focuses on, but is not limited to the following aspects: • Cosmochemistry • Mantle Geochemistry • Ore-deposit Geochemistry • Organic Geochemistry • Environmental Geochemistry • Computational Geochemistry • Isotope Geochemistry • NanoGeochemistry All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Acta Geochimica publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信