Newly isolated halotolerant Gordonia terrae S-LD serves as a microbial cell factory for the bioconversion of used soybean oil into polyhydroxybutyrate

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Song Xu, Ruiqin Han, Lidan Tao, Zhipeng Zhang, Junfei Gao, Xinyuan Wang, Wei Zhao, Xiaoxia Zhang, Zhiyong Huang
{"title":"Newly isolated halotolerant Gordonia terrae S-LD serves as a microbial cell factory for the bioconversion of used soybean oil into polyhydroxybutyrate","authors":"Song Xu,&nbsp;Ruiqin Han,&nbsp;Lidan Tao,&nbsp;Zhipeng Zhang,&nbsp;Junfei Gao,&nbsp;Xinyuan Wang,&nbsp;Wei Zhao,&nbsp;Xiaoxia Zhang,&nbsp;Zhiyong Huang","doi":"10.1186/s13068-025-02613-w","DOIUrl":null,"url":null,"abstract":"<div><p>Polyhydroxybutyrate (PHB) is a class of biodegradable polymers generally used by prokaryotes as carbon sources and for energy storage. This study explored the feasibility of repurposing used soybean oil (USO) as a cost-effective carbon substrate for the production of PHB by the strain <i>Gordonia terrae</i> S-LD, marking the first report on PHB biosynthesis by this rare actinomycete species. This strain can grow under a broad range of temperatures (25–40 ℃), initial pH values (4–10), and salt concentrations (0–7%). The findings indicate that this strain can synthesize PHB at a level of 2.63 ± 0.6 g/L in a waste-containing medium containing 3% NaCl within a 3 L triangular flask, accounting for 66.97% of the cell dry weight. Furthermore, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and GC–MS results confirmed that the polymer was PHB. The thermal properties of PHB, including its melting (T<sub>m</sub>) and crystallization (T<sub>c</sub>) temperatures of 176.34 °C and 56.12 °C respectively, were determined via differential scanning calorimetry analysis. The produced PHB was characterized by a weight-average molecular weight (M<sub>w</sub>) of 5.43 × 10<sup>5</sup> g/mol, a number-average molecular weight (M<sub>n</sub>) of 4.00 × 10<sup>5</sup> g/mol, and a polydispersity index (PDI) of 1.36. In addition, the whole genome was sequenced, and the PHB biosynthetic pathway and quantitative expression of key genes were delineated in the novel isolated strain. In conclusion, this research introduces the first instance of polyhydroxyalkanoate (PHA) production by <i>Gordonia terrae</i> using used soybean oil as the exclusive carbon source, which will enrich strain resources for future PHB biosynthesis.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02613-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02613-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyhydroxybutyrate (PHB) is a class of biodegradable polymers generally used by prokaryotes as carbon sources and for energy storage. This study explored the feasibility of repurposing used soybean oil (USO) as a cost-effective carbon substrate for the production of PHB by the strain Gordonia terrae S-LD, marking the first report on PHB biosynthesis by this rare actinomycete species. This strain can grow under a broad range of temperatures (25–40 ℃), initial pH values (4–10), and salt concentrations (0–7%). The findings indicate that this strain can synthesize PHB at a level of 2.63 ± 0.6 g/L in a waste-containing medium containing 3% NaCl within a 3 L triangular flask, accounting for 66.97% of the cell dry weight. Furthermore, 1H NMR, 13C NMR, and GC–MS results confirmed that the polymer was PHB. The thermal properties of PHB, including its melting (Tm) and crystallization (Tc) temperatures of 176.34 °C and 56.12 °C respectively, were determined via differential scanning calorimetry analysis. The produced PHB was characterized by a weight-average molecular weight (Mw) of 5.43 × 105 g/mol, a number-average molecular weight (Mn) of 4.00 × 105 g/mol, and a polydispersity index (PDI) of 1.36. In addition, the whole genome was sequenced, and the PHB biosynthetic pathway and quantitative expression of key genes were delineated in the novel isolated strain. In conclusion, this research introduces the first instance of polyhydroxyalkanoate (PHA) production by Gordonia terrae using used soybean oil as the exclusive carbon source, which will enrich strain resources for future PHB biosynthesis.

新分离的耐盐碱戈登氏土菌 S-LD 可作为将废豆油生物转化为聚羟基丁酸的微生物细胞工厂
聚羟基丁酸酯(PHB)是一类可生物降解的聚合物,通常被原核生物用作碳源和储能。本研究探索了利用废弃大豆油(USO)作为低成本碳底物,利用Gordonia terrae S-LD菌株生产PHB的可行性,这是利用这种稀有放线菌生物合成PHB的首次报道。该菌株可以在很宽的温度范围(25-40℃)、初始pH值(4-10)和盐浓度(0-7%)下生长。结果表明,该菌株在3 L三角形烧瓶中,在含3% NaCl的含废培养基中,PHB的合成水平为2.63±0.6 g/L,占细胞干重的66.97%。1H NMR、13C NMR和GC-MS均证实该聚合物为PHB。采用差示扫描量热法测定了PHB的热性能,包括熔点Tm和结晶点Tc分别为176.34℃和56.12℃。合成的PHB分子量(Mw)为5.43 × 105 g/mol,数均分子量(Mn)为4.00 × 105 g/mol,多分散指数(PDI)为1.36。此外,对新分离菌株进行了全基因组测序,描绘了PHB生物合成途径和关键基因的定量表达。综上所述,本研究首次介绍了以废豆油为唯一碳源的地戈登菌(Gordonia terrae)生产聚羟基烷酸酯(PHA)的实例,为今后PHB的生物合成提供了丰富的菌种资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信