Structure of some additive maps in prime rings with involution

Q2 Mathematics
Mohammad Aslam Siddeeque, Abbas Hussain Shikeh, Raof Ahmad Bhat
{"title":"Structure of some additive maps in prime rings with involution","authors":"Mohammad Aslam Siddeeque,&nbsp;Abbas Hussain Shikeh,&nbsp;Raof Ahmad Bhat","doi":"10.1007/s11565-025-00580-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\textrm{R}\\)</span> be a noncommutative prime ring equipped with an involution ‘<span>\\(*\\)</span>’, and let <span>\\(\\mathcal {Q}_{ml}(\\textrm{R})\\)</span> be the maximal left ring of quotients of <span>\\(\\textrm{R}\\)</span>. The objective of this paper is to characterize additive maps <span>\\(\\mathcal {H}:\\textrm{R}\\rightarrow \\mathcal {Q}_{ml}(\\textrm{R})\\)</span> that satisfy any one of the following conditions. (<i>i</i>) <span>\\(\\mathcal {H}(srs)=\\mathcal {H}(s)s^*r^*+s\\mathcal {H}(r)s^*+sr\\mathcal {H}(s)\\)</span> for all <span>\\(s, r\\in \\textrm{R}\\)</span>. (<i>ii</i>) <span>\\(\\mathcal {H}(s^*s)=\\mathcal {H}(s^*)s+s^*\\mathcal {H}(s)\\)</span> for all <span>\\(s\\in \\textrm{R}\\)</span>.\n</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00580-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\textrm{R}\) be a noncommutative prime ring equipped with an involution ‘\(*\)’, and let \(\mathcal {Q}_{ml}(\textrm{R})\) be the maximal left ring of quotients of \(\textrm{R}\). The objective of this paper is to characterize additive maps \(\mathcal {H}:\textrm{R}\rightarrow \mathcal {Q}_{ml}(\textrm{R})\) that satisfy any one of the following conditions. (i) \(\mathcal {H}(srs)=\mathcal {H}(s)s^*r^*+s\mathcal {H}(r)s^*+sr\mathcal {H}(s)\) for all \(s, r\in \textrm{R}\). (ii) \(\mathcal {H}(s^*s)=\mathcal {H}(s^*)s+s^*\mathcal {H}(s)\) for all \(s\in \textrm{R}\).

素环中带有内卷的一些加法映射的结构
设\(\textrm{R}\)为具有对合式\(*\)的非交换素环,设\(\mathcal {Q}_{ml}(\textrm{R})\)为\(\textrm{R}\)的商的最大左环。本文的目的是描述满足下列条件之一的可加映射\(\mathcal {H}:\textrm{R}\rightarrow \mathcal {Q}_{ml}(\textrm{R})\)。(i) \(\mathcal {H}(srs)=\mathcal {H}(s)s^*r^*+s\mathcal {H}(r)s^*+sr\mathcal {H}(s)\)适用于所有\(s, r\in \textrm{R}\)。(ii) \(\mathcal {H}(s^*s)=\mathcal {H}(s^*)s+s^*\mathcal {H}(s)\)适用于所有\(s\in \textrm{R}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信