New fractional type weights and the boundedness of some operators

IF 1.4 3区 数学 Q1 MATHEMATICS
Xi Cen, Qianjun He, Zichen Song, Zihan Wang
{"title":"New fractional type weights and the boundedness of some operators","authors":"Xi Cen,&nbsp;Qianjun He,&nbsp;Zichen Song,&nbsp;Zihan Wang","doi":"10.1007/s13324-025-01027-z","DOIUrl":null,"url":null,"abstract":"<div><p>Two classes of fractional type variable weights are established in this paper. The first kind of weights <span>\\({A_{\\vec { p}( \\cdot ),q( \\cdot )}}\\)</span> are variable multiple weights, which are characterized by the weighted variable boundedness of multilinear fractional type operators, called multilinear Hardy–Littlewood–Sobolev theorem on weighted variable Lebesgue spaces. Meanwhile, the weighted variable boundedness for the commutators of multilinear fractional type operators are also obtained. This generalizes some known work, such as Moen (Collect Math 60(2):213–238, 2009), Bernardis et al. (Ann Acad Sci Fenn-M 39:23–50, 2014), and Cruz-Uribe and Guzmán (Publ Mat 64(2):453–498, 2020). Another class of weights <span>\\({{\\mathbb {A}}_{p( \\cdot ),q(\\cdot )}}\\)</span> are variable matrix weights that also characterized by certain fractional type operators. This generalize some previous results on matrix weights <span>\\({{\\mathbb {A}}_{p( \\cdot )}}\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01027-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two classes of fractional type variable weights are established in this paper. The first kind of weights \({A_{\vec { p}( \cdot ),q( \cdot )}}\) are variable multiple weights, which are characterized by the weighted variable boundedness of multilinear fractional type operators, called multilinear Hardy–Littlewood–Sobolev theorem on weighted variable Lebesgue spaces. Meanwhile, the weighted variable boundedness for the commutators of multilinear fractional type operators are also obtained. This generalizes some known work, such as Moen (Collect Math 60(2):213–238, 2009), Bernardis et al. (Ann Acad Sci Fenn-M 39:23–50, 2014), and Cruz-Uribe and Guzmán (Publ Mat 64(2):453–498, 2020). Another class of weights \({{\mathbb {A}}_{p( \cdot ),q(\cdot )}}\) are variable matrix weights that also characterized by certain fractional type operators. This generalize some previous results on matrix weights \({{\mathbb {A}}_{p( \cdot )}}\).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信