Existence of normalized solutions to a class of non-autonomous (p, q)-Laplacian equations

IF 1.4 3区 数学 Q1 MATHEMATICS
Xiaoxiao Cui, Anran Li, Chongqing Wei
{"title":"Existence of normalized solutions to a class of non-autonomous (p, q)-Laplacian equations","authors":"Xiaoxiao Cui,&nbsp;Anran Li,&nbsp;Chongqing Wei","doi":"10.1007/s13324-025-01025-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the multiplicity of normalized solutions of the following (<i>p</i>, <i>q</i>)-Laplacian equation </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta _p u-\\Delta _q u=\\lambda |u|^{p-2}u+V(\\epsilon x)f(u)\\ \\ \\text {in}\\ \\ \\mathbb {R}^N,\\\\ \\int _{\\mathbb {R}^N}|u|^pdx=a^p,\\\\ \\end{array}\\right. \\end{aligned}$$</span></div></div><p>where <span>\\(1&lt;p&lt;q&lt;N\\)</span>, <i>a</i>, <span>\\(\\epsilon &gt;0\\)</span>, <span>\\(\\Delta _lu:=\\hbox {div}(|\\nabla u|^{l-2}\\nabla u)\\)</span> with <span>\\(l\\in \\{p,q\\}\\)</span>, stands for the <i>l</i>-Laplacian operator. <span>\\(\\lambda \\in \\mathbb {R}\\)</span> is an unknown parameter that appears as a Lagrange multiplier. <span>\\(V:\\mathbb {R}^N\\rightarrow \\mathbb {R}\\)</span> is a continuous function with some proper assumptions. <i>f</i> is a continuous function with <span>\\(L^p\\)</span>-mass subcritical growth. By using variational methods, we prove that the equation has multiple normalized solutions, as <span>\\(\\epsilon \\)</span> is small enough. Precisely, the number of normalized solutions is at least twice that of the global maximum points of <i>V</i>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01025-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the multiplicity of normalized solutions of the following (pq)-Laplacian equation

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _p u-\Delta _q u=\lambda |u|^{p-2}u+V(\epsilon x)f(u)\ \ \text {in}\ \ \mathbb {R}^N,\\ \int _{\mathbb {R}^N}|u|^pdx=a^p,\\ \end{array}\right. \end{aligned}$$

where \(1<p<q<N\), a, \(\epsilon >0\), \(\Delta _lu:=\hbox {div}(|\nabla u|^{l-2}\nabla u)\) with \(l\in \{p,q\}\), stands for the l-Laplacian operator. \(\lambda \in \mathbb {R}\) is an unknown parameter that appears as a Lagrange multiplier. \(V:\mathbb {R}^N\rightarrow \mathbb {R}\) is a continuous function with some proper assumptions. f is a continuous function with \(L^p\)-mass subcritical growth. By using variational methods, we prove that the equation has multiple normalized solutions, as \(\epsilon \) is small enough. Precisely, the number of normalized solutions is at least twice that of the global maximum points of V.

一类非自治(p, q)-拉普拉斯方程正解的存在性
我们研究了以下(p, q)-拉普拉斯方程$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _p u-\Delta _q u=\lambda |u|^{p-2}u+V(\epsilon x)f(u)\ \ \text {in}\ \ \mathbb {R}^N,\\ \int _{\mathbb {R}^N}|u|^pdx=a^p,\\ \end{array}\right. \end{aligned}$$的归一化解的多重性,其中\(1<p<q<N\), a, \(\epsilon >0\), \(\Delta _lu:=\hbox {div}(|\nabla u|^{l-2}\nabla u)\), \(l\in \{p,q\}\)表示l-拉普拉斯算子。\(\lambda \in \mathbb {R}\)是一个以拉格朗日乘子形式出现的未知参数。\(V:\mathbb {R}^N\rightarrow \mathbb {R}\)是一个具有适当假设的连续函数。F是具有\(L^p\) -质量亚临界增长的连续函数。通过变分方法,我们证明了方程有多个归一化解,因为\(\epsilon \)足够小。准确地说,归一化解的个数至少是V全局最大值点的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信