Fekete-szegö results for certain class of meromorphic functions using \(q-\)derivative operator

IF 0.9 Q2 MATHEMATICS
A. O. Mostafa, G. M. El-Hawsh
{"title":"Fekete-szegö results for certain class of meromorphic functions using \\(q-\\)derivative operator","authors":"A. O. Mostafa,&nbsp;G. M. El-Hawsh","doi":"10.1007/s13370-024-01223-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we introduce the subclasses <span>\\(\\sum _{b}^{*}\\left( q,\\phi \\right) \\)</span> and <span>\\(\\sum _{b}^{*}\\left( \\alpha ,q,\\phi \\right) \\)</span> of meromorphic functions <span>\\(f\\left( z\\right) \\)</span> satisfying <span>\\(1+\\frac{1}{b}\\left[ -\\frac{qzD_{q}^{*}f(z)}{f(z)}-1\\right] \\prec \\phi (z)\\)</span> and <span>\\(1+\\frac{1}{b}\\left[ \\frac{-\\left( 1-\\frac{\\alpha }{q}\\right) qzD_{q}^{*}f\\left( z\\right) +\\alpha qzD_{q}^{*}\\left[ zD_{q}^{*}f\\left( z\\right) \\right] }{\\left( 1-\\frac{\\alpha }{q}\\right) f\\left( z\\right) -\\alpha zD_{q}^{*}f\\left( z\\right) }-1\\right] \\prec \\phi (z)\\ (b\\in \\mathbb {C} ^{*}=\\mathbb {C}\\backslash \\left\\{ 0\\right\\} ,\\ \\)</span> <span>\\(\\alpha \\in \\mathbb {C}\\backslash (0,1],\\ \\operatorname {Re}(\\alpha )\\ge 0,\\ 0&lt;q&lt;1)\\)</span>, respectively. Sharp bounds for the Fekete-Szegö functional <span>\\(\\left| a_{1}-\\mu a_{0}^{2}\\right| \\)</span> are obtained.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-024-01223-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01223-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we introduce the subclasses \(\sum _{b}^{*}\left( q,\phi \right) \) and \(\sum _{b}^{*}\left( \alpha ,q,\phi \right) \) of meromorphic functions \(f\left( z\right) \) satisfying \(1+\frac{1}{b}\left[ -\frac{qzD_{q}^{*}f(z)}{f(z)}-1\right] \prec \phi (z)\) and \(1+\frac{1}{b}\left[ \frac{-\left( 1-\frac{\alpha }{q}\right) qzD_{q}^{*}f\left( z\right) +\alpha qzD_{q}^{*}\left[ zD_{q}^{*}f\left( z\right) \right] }{\left( 1-\frac{\alpha }{q}\right) f\left( z\right) -\alpha zD_{q}^{*}f\left( z\right) }-1\right] \prec \phi (z)\ (b\in \mathbb {C} ^{*}=\mathbb {C}\backslash \left\{ 0\right\} ,\ \) \(\alpha \in \mathbb {C}\backslash (0,1],\ \operatorname {Re}(\alpha )\ge 0,\ 0<q<1)\), respectively. Sharp bounds for the Fekete-Szegö functional \(\left| a_{1}-\mu a_{0}^{2}\right| \) are obtained.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信