FCPFS: Fuzzy Granular Ball Clustering-Based Partial Multilabel Feature Selection With Fuzzy Mutual Information

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lin Sun;Qifeng Zhang;Weiping Ding;Tianxiang Wang;Jiucheng Xu
{"title":"FCPFS: Fuzzy Granular Ball Clustering-Based Partial Multilabel Feature Selection With Fuzzy Mutual Information","authors":"Lin Sun;Qifeng Zhang;Weiping Ding;Tianxiang Wang;Jiucheng Xu","doi":"10.1109/TETCI.2024.3399665","DOIUrl":null,"url":null,"abstract":"In the partial multilabel learning, incorrect labels are annotated because of their low quality and poor recognition. To decrease secondary errors in partial multilabel classification, this paper proposes a novel fuzzy granular ball clustering-based partial multilabel feature selection scheme with fuzzy mutual information. First, to overcome the defect that the traditional granular ball model cannot be applied to partial multilabel classification and its splitting rules are anomalous and stochastic, an objective function is designed by the fuzzy membership degree, the splitting rules and termination conditions are redesigned, and a new fuzzy granular ball clustering method using fuzzy <italic>k</i>-means can be developed to preprocess partial multilabel data. Second, to reduce the impact of noise labels, the instance set of each granular ball is generated according to fuzzy granular ball clustering instead of neighborhood class, and the fuzzy similarity relationship between instances is constructed. Subsequently, granular ball-based fuzzy entropy measures and fuzzy mutual information and their properties are proposed in granular ball-based partial multilabel systems. Finally, the dependence and relevance between features and label sets are studied, the significance of features based on fuzzy mutual information is presented, and then a heuristic partial multilabel feature selection method is constructed to enhance the effect of partial multilabel data classification. Experiments on 18 partial multilabel datasets illustrate the availability of our method compared to other multilabel classification algorithms in its classification effect.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"590-606"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10545651/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the partial multilabel learning, incorrect labels are annotated because of their low quality and poor recognition. To decrease secondary errors in partial multilabel classification, this paper proposes a novel fuzzy granular ball clustering-based partial multilabel feature selection scheme with fuzzy mutual information. First, to overcome the defect that the traditional granular ball model cannot be applied to partial multilabel classification and its splitting rules are anomalous and stochastic, an objective function is designed by the fuzzy membership degree, the splitting rules and termination conditions are redesigned, and a new fuzzy granular ball clustering method using fuzzy k-means can be developed to preprocess partial multilabel data. Second, to reduce the impact of noise labels, the instance set of each granular ball is generated according to fuzzy granular ball clustering instead of neighborhood class, and the fuzzy similarity relationship between instances is constructed. Subsequently, granular ball-based fuzzy entropy measures and fuzzy mutual information and their properties are proposed in granular ball-based partial multilabel systems. Finally, the dependence and relevance between features and label sets are studied, the significance of features based on fuzzy mutual information is presented, and then a heuristic partial multilabel feature selection method is constructed to enhance the effect of partial multilabel data classification. Experiments on 18 partial multilabel datasets illustrate the availability of our method compared to other multilabel classification algorithms in its classification effect.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信