{"title":"Ultra-Short-Term Wind Power Forecasting Based on DT-DSCTransformer Model","authors":"Yanlong Gao;Feng Xing;Lipeng Kang;Mingming Zhang;Caiyan Qin","doi":"10.1109/ACCESS.2025.3537158","DOIUrl":null,"url":null,"abstract":"When using the Transformer model for wind power prediction, the accuracy of the model predictions tends to be reduced due to the shift in the wind power data distribution, channel mixing, and the inability of the model to establish strong correlations. To address these challenges, this paper proposes an ultra-short-term wind power prediction model based on the DT-DSCTransformer. First, the model applies DT’s self-learning standardization and de-standardization parameters to standardize the input and de-standardize the output, mitigating the impact forecasting of data distribution shifts on prediction accuracy. Second, the proposed De-Stationary Channel Attention (DSCAttention) mechanism is introduced. By incorporating De-Stationary Attention (DSAttention) into the channel attention mechanism while maintaining channel independence, the model establishes stronger inter-channel correlations, addressing the performance degradation caused by channel mixing and weak correlations. Finally, experimental analysis demonstrates that the proposed model achieves the highest prediction accuracy compared to commonly used time series forecasting models.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"22919-22930"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858711","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858711/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
When using the Transformer model for wind power prediction, the accuracy of the model predictions tends to be reduced due to the shift in the wind power data distribution, channel mixing, and the inability of the model to establish strong correlations. To address these challenges, this paper proposes an ultra-short-term wind power prediction model based on the DT-DSCTransformer. First, the model applies DT’s self-learning standardization and de-standardization parameters to standardize the input and de-standardize the output, mitigating the impact forecasting of data distribution shifts on prediction accuracy. Second, the proposed De-Stationary Channel Attention (DSCAttention) mechanism is introduced. By incorporating De-Stationary Attention (DSAttention) into the channel attention mechanism while maintaining channel independence, the model establishes stronger inter-channel correlations, addressing the performance degradation caused by channel mixing and weak correlations. Finally, experimental analysis demonstrates that the proposed model achieves the highest prediction accuracy compared to commonly used time series forecasting models.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.