{"title":"MagSpy: Revealing User Privacy Leakage via Magnetometer on Mobile Devices","authors":"Yongjian Fu;Lanqing Yang;Hao Pan;Yi-Chao Chen;Guangtao Xue;Ju Ren","doi":"10.1109/TMC.2024.3495506","DOIUrl":null,"url":null,"abstract":"Various characteristics of mobile applications (apps) and associated in-app services can reveal potentially-sensitive user information; however, privacy concerns have prompted third-party apps to restrict access to data related to mobile app usage. This paper outlines a novel approach to extracting detailed app usage information by analyzing electromagnetic (EM) signals emitted from mobile devices during app-related tasks. The proposed system, MagSpy, recovers user privacy information from magnetometer readings that do not require access permissions. This EM leakage becomes complex when multiple apps are used simultaneously and is subject to interference from geomagnetic signals generated by device movement. To address these challenges, MagSpy employs multiple techniques to extract and identify signals related to app usage. Specifically, the geomagnetic offset signal is canceled using accelerometer and gyroscope sensor data, and a Cascade-LSTM algorithm is used to classify apps and in-app services. MagSpy also uses CWT-based peak detection and a Random Forest classifier to detect PIN inputs. A prototype system was evaluated on over 50 popular mobile apps with 30 devices. Extensive evaluation results demonstrate the efficacy of MagSpy in identifying in-app services (96% accuracy), apps (93.5% accuracy), and extracting PIN input information (96% top-3 accuracy).","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"2455-2469"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750020/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Various characteristics of mobile applications (apps) and associated in-app services can reveal potentially-sensitive user information; however, privacy concerns have prompted third-party apps to restrict access to data related to mobile app usage. This paper outlines a novel approach to extracting detailed app usage information by analyzing electromagnetic (EM) signals emitted from mobile devices during app-related tasks. The proposed system, MagSpy, recovers user privacy information from magnetometer readings that do not require access permissions. This EM leakage becomes complex when multiple apps are used simultaneously and is subject to interference from geomagnetic signals generated by device movement. To address these challenges, MagSpy employs multiple techniques to extract and identify signals related to app usage. Specifically, the geomagnetic offset signal is canceled using accelerometer and gyroscope sensor data, and a Cascade-LSTM algorithm is used to classify apps and in-app services. MagSpy also uses CWT-based peak detection and a Random Forest classifier to detect PIN inputs. A prototype system was evaluated on over 50 popular mobile apps with 30 devices. Extensive evaluation results demonstrate the efficacy of MagSpy in identifying in-app services (96% accuracy), apps (93.5% accuracy), and extracting PIN input information (96% top-3 accuracy).
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.