{"title":"Low-Rank Adaptation of Pre-Trained Large Vision Models for Improved Lung Nodule Malignancy Classification","authors":"Benjamin P. Veasey;Amir A. Amini","doi":"10.1109/OJEMB.2025.3530841","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i> This paper investigates using Low-Rank Adaptation (LoRA) to adapt large vision models (LVMs) pretrained with self-supervised learning (SSL) for lung nodule malignancy classification. Inspired by LoRA's success in the field of Natural Language Processing, we hypothesized that such an adaptation technique can significantly improve classification performance, parameter efficiency, and training speed for the novel application of lung image cancer diagnostic. <italic>Methods:</i> Utilizing two comprehensive lung nodule datasets, NLSTx and LIDC, which together encompass a diverse array of biopsy- and radiologist-confirmed lung CT scans, our rigorous experimental setup demonstrates that LoRA-adapted models markedly surpass traditional fine-tuning methods. <italic>Results:</i> The best LoRA-adapted model achieved a 3% increase in ROC AUC over the state-of-the-art model, utilized 89.9% fewer parameters, and reduced training times by 36.5%. <italic>Conclusions:</i> Integrating LoRA with out-of-domain pretrained LVMs offers a promising avenue for enhancing performance of lung nodule malignancy classification. The annotations for the NLSTx dataset are also released with this paper on GitHub at <uri>https://github.com/benVZ/NLSTx</uri>.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"296-304"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843806","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843806/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Goal: This paper investigates using Low-Rank Adaptation (LoRA) to adapt large vision models (LVMs) pretrained with self-supervised learning (SSL) for lung nodule malignancy classification. Inspired by LoRA's success in the field of Natural Language Processing, we hypothesized that such an adaptation technique can significantly improve classification performance, parameter efficiency, and training speed for the novel application of lung image cancer diagnostic. Methods: Utilizing two comprehensive lung nodule datasets, NLSTx and LIDC, which together encompass a diverse array of biopsy- and radiologist-confirmed lung CT scans, our rigorous experimental setup demonstrates that LoRA-adapted models markedly surpass traditional fine-tuning methods. Results: The best LoRA-adapted model achieved a 3% increase in ROC AUC over the state-of-the-art model, utilized 89.9% fewer parameters, and reduced training times by 36.5%. Conclusions: Integrating LoRA with out-of-domain pretrained LVMs offers a promising avenue for enhancing performance of lung nodule malignancy classification. The annotations for the NLSTx dataset are also released with this paper on GitHub at https://github.com/benVZ/NLSTx.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.