Chang-Jiang Zhang;Mei-Shu Chen;Lei-Ming Ma;Xiao-Qin Lu
{"title":"Deep Learning and Wavelet Transform Combined With Multichannel Satellite Images for Tropical Cyclone Intensity Estimation","authors":"Chang-Jiang Zhang;Mei-Shu Chen;Lei-Ming Ma;Xiao-Qin Lu","doi":"10.1109/JSTARS.2025.3531448","DOIUrl":null,"url":null,"abstract":"Tropical cyclone (TC) is a highly catastrophic weather event, and accurate estimation of intensity is of great significance. The current proposed TC intensity estimation model focuses on training using satellite images from single or two channels, and the model cannot fully capture features related to TC intensity, resulting in low accuracy. To this end, we propose a double-layer encoder–decoder model for estimating the intensity of TC, which is trained using images from three channels: infrared, water vapor, and passive microwave. The model mainly consists of three modules: wavelet transform enhancement module, multichannel satellite image fusion module, and TC intensity estimation module, which are used to extract high-frequency information from the source image, generate a three-channel fused image, and perform TC intensity estimation. To validate the performance of our model, we conducted extensive experiments on the TCIR dataset. The experimental results show that the proposed model has MAE and RMSE of 3.76 m/s and 4.62 m/s for TC intensity estimation, which are 15.70% and 20.07% lower than advanced Dvorak technology, respectively. Therefore, the model proposed in this article has great potential in accurately estimating TC intensity.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"4711-4735"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10845190","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10845190/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tropical cyclone (TC) is a highly catastrophic weather event, and accurate estimation of intensity is of great significance. The current proposed TC intensity estimation model focuses on training using satellite images from single or two channels, and the model cannot fully capture features related to TC intensity, resulting in low accuracy. To this end, we propose a double-layer encoder–decoder model for estimating the intensity of TC, which is trained using images from three channels: infrared, water vapor, and passive microwave. The model mainly consists of three modules: wavelet transform enhancement module, multichannel satellite image fusion module, and TC intensity estimation module, which are used to extract high-frequency information from the source image, generate a three-channel fused image, and perform TC intensity estimation. To validate the performance of our model, we conducted extensive experiments on the TCIR dataset. The experimental results show that the proposed model has MAE and RMSE of 3.76 m/s and 4.62 m/s for TC intensity estimation, which are 15.70% and 20.07% lower than advanced Dvorak technology, respectively. Therefore, the model proposed in this article has great potential in accurately estimating TC intensity.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.