Wenmei Li;Hao Xia;Bin Xi;Yu Wang;Jing Lu;Yuhong He
{"title":"SSL-MBC: Self-Supervised Learning With Multibranch Consistency for Few-Shot PolSAR Image Classification","authors":"Wenmei Li;Hao Xia;Bin Xi;Yu Wang;Jing Lu;Yuhong He","doi":"10.1109/JSTARS.2025.3528529","DOIUrl":null,"url":null,"abstract":"Deep learning methods have recently made substantial advances in polarimetric synthetic aperture radar (PolSAR) image classification. However, supervised training relying on massive labeled samples is one of its major limitations, especially for PolSAR images that are hard to manually annotate. Self-supervised learning (SSL) is an effective solution for insufficient labeled samples by mining supervised information from the data itself. Nevertheless, fully utilizing SSL in PolSAR classification tasks is still a great challenge due to the data complexity. Based on the abovementioned issues, we propose an SSL model with multibranch consistency (SSL-MBC) for few-shot PolSAR image classification. Specifically, the data augmentation technique used in the pretext task involves a combination of various spatial transformations and channel transformations achieved through scattering feature extraction. In addition, the distinct scattering features of PolSAR data are considered as its unique multimodal representations. It is observed that the different modal representations of the same instance exhibit similarity in the encoding space, with the hidden features of more modals being more prominent. Therefore, a multibranch contrastive SSL framework, without negative samples, is employed to efficiently achieve representation learning. The resulting abstract features are then fine-tuned to ensure generalization in downstream tasks, thereby enabling few-shot classification. Experimental results yielded from selected PolSAR datasets convincingly indicate that our method exhibits superior performance compared to other existing methodologies. The exhaustive ablation study shows that the model performance degrades when either the data augmentation or any branch is masked, and the classification result does not rely on the label amount.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"4696-4710"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839016/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning methods have recently made substantial advances in polarimetric synthetic aperture radar (PolSAR) image classification. However, supervised training relying on massive labeled samples is one of its major limitations, especially for PolSAR images that are hard to manually annotate. Self-supervised learning (SSL) is an effective solution for insufficient labeled samples by mining supervised information from the data itself. Nevertheless, fully utilizing SSL in PolSAR classification tasks is still a great challenge due to the data complexity. Based on the abovementioned issues, we propose an SSL model with multibranch consistency (SSL-MBC) for few-shot PolSAR image classification. Specifically, the data augmentation technique used in the pretext task involves a combination of various spatial transformations and channel transformations achieved through scattering feature extraction. In addition, the distinct scattering features of PolSAR data are considered as its unique multimodal representations. It is observed that the different modal representations of the same instance exhibit similarity in the encoding space, with the hidden features of more modals being more prominent. Therefore, a multibranch contrastive SSL framework, without negative samples, is employed to efficiently achieve representation learning. The resulting abstract features are then fine-tuned to ensure generalization in downstream tasks, thereby enabling few-shot classification. Experimental results yielded from selected PolSAR datasets convincingly indicate that our method exhibits superior performance compared to other existing methodologies. The exhaustive ablation study shows that the model performance degrades when either the data augmentation or any branch is masked, and the classification result does not rely on the label amount.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.