Industrial Rare Cyber Attack Detection Based on Federated Diffusion-Squeeze Graph Modeling

Fangyu Li;Junnuo Lin;Di Wang;Hongyan Yang
{"title":"Industrial Rare Cyber Attack Detection Based on Federated Diffusion-Squeeze Graph Modeling","authors":"Fangyu Li;Junnuo Lin;Di Wang;Hongyan Yang","doi":"10.1109/TICPS.2025.3533461","DOIUrl":null,"url":null,"abstract":"Distributed learning applied in industrial cyber-physical systems (ICPS) is vulnerable to cyber attacks, especially rare ones. Common data-driven cyber attack detection approaches face the challenges of imbalanced data, resulting in insufficient extraction of anomalous features. To enhance the sensitivity of rare cyber attack detection in complex ICPS, we propose a federated diffusion-squeeze graph model (FedDSG). In each edge device, we construct a local diffusion-based generative module to balance rare anomalous data and construct feature graphs, which maintains information fidelity and type balance of data. To alleviate the extra computational load, we establish a graph-structured detection module based on information bottleneck (IB) to filter out redundant topological features and identify the optimal graph for modeling. In the central server, we design an aggregation strategy in the central server to consolidate a global FedDSG and the global generative module generates synthetic cyber attack data to retrain the global detection module. In addition, we verify FedDSG using public industrial datasets on the self-constructed simulation platform. The results show that FedDSG improves the efficiency of rare cyber attack detection.","PeriodicalId":100640,"journal":{"name":"IEEE Transactions on Industrial Cyber-Physical Systems","volume":"3 ","pages":"150-164"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10852346/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed learning applied in industrial cyber-physical systems (ICPS) is vulnerable to cyber attacks, especially rare ones. Common data-driven cyber attack detection approaches face the challenges of imbalanced data, resulting in insufficient extraction of anomalous features. To enhance the sensitivity of rare cyber attack detection in complex ICPS, we propose a federated diffusion-squeeze graph model (FedDSG). In each edge device, we construct a local diffusion-based generative module to balance rare anomalous data and construct feature graphs, which maintains information fidelity and type balance of data. To alleviate the extra computational load, we establish a graph-structured detection module based on information bottleneck (IB) to filter out redundant topological features and identify the optimal graph for modeling. In the central server, we design an aggregation strategy in the central server to consolidate a global FedDSG and the global generative module generates synthetic cyber attack data to retrain the global detection module. In addition, we verify FedDSG using public industrial datasets on the self-constructed simulation platform. The results show that FedDSG improves the efficiency of rare cyber attack detection.
基于联邦扩散-挤压图模型的工业稀有网络攻击检测
分布式学习应用于工业网络物理系统(ICPS)容易受到网络攻击,特别是罕见的网络攻击。常用的数据驱动网络攻击检测方法面临着数据不平衡的挑战,导致异常特征提取不足。为了提高复杂ICPS中罕见网络攻击检测的灵敏度,我们提出了一种联邦扩散-挤压图模型(FedDSG)。在每个边缘设备中,我们构建了一个基于局部扩散的生成模块来平衡罕见异常数据并构建特征图,以保持数据的信息保真度和类型平衡。为了减轻额外的计算负担,我们建立了一个基于信息瓶颈(IB)的图结构检测模块来过滤冗余的拓扑特征并识别最优的图进行建模。在中心服务器中,我们在中心服务器中设计了聚合策略来整合全局FedDSG,全局生成模块生成综合网络攻击数据来重新训练全局检测模块。此外,在自建的仿真平台上,利用公开的工业数据集对FedDSG进行了验证。结果表明,FedDSG提高了罕见网络攻击的检测效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信