Enhancing the Spatial Resolution of Sentinel-2 Images Through Super-Resolution Using Transformer-Based Deep-Learning Models

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Alireza Sharifi;Mohammad Mahdi Safari
{"title":"Enhancing the Spatial Resolution of Sentinel-2 Images Through Super-Resolution Using Transformer-Based Deep-Learning Models","authors":"Alireza Sharifi;Mohammad Mahdi Safari","doi":"10.1109/JSTARS.2025.3526260","DOIUrl":null,"url":null,"abstract":"Satellite imagery plays a pivotal role in environmental monitoring, urban planning, and national security. However, spatial resolution limitations of current satellite sensors restrict the clarity and usability of captured images. This study introduces a novel transformer-based deep-learning model to enhance the spatial resolution of Sentinel-2 images. The proposed architecture leverages multihead attention and integrated spatial and channel attention mechanisms to effectively extract and reconstruct fine details from low-resolution inputs. The model's performance was evaluated on the Sentinel-2 dataset, along with benchmark datasets (AID and UC-Merced), and compared against state-of-the-art methods, including ResNet, Swin Transformer, and ViT. Experimental results demonstrate superior performance, achieving a peak signal-to-noise ratio (PSNR) of 33.52 dB, structural similarity index (SSIM) of 0.862, and signal-to-reconstruction error ratio (SRE) of 36.7 dB on Sentinel-2 RGB bands. The proposed method outperforms state-of-the-art approaches, including ResNet, Swin Transformer, and ViT, on benchmark datasets (Sentinel-2, AID, and UC-Merced). The results demonstrate that the proposed method achieves superior performance in terms of PSNR, SSIM, and SRE metrics, highlighting its effectiveness in revealing finer spatial details and improving image quality for practical remote sensing applications.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"4805-4820"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829708","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10829708/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite imagery plays a pivotal role in environmental monitoring, urban planning, and national security. However, spatial resolution limitations of current satellite sensors restrict the clarity and usability of captured images. This study introduces a novel transformer-based deep-learning model to enhance the spatial resolution of Sentinel-2 images. The proposed architecture leverages multihead attention and integrated spatial and channel attention mechanisms to effectively extract and reconstruct fine details from low-resolution inputs. The model's performance was evaluated on the Sentinel-2 dataset, along with benchmark datasets (AID and UC-Merced), and compared against state-of-the-art methods, including ResNet, Swin Transformer, and ViT. Experimental results demonstrate superior performance, achieving a peak signal-to-noise ratio (PSNR) of 33.52 dB, structural similarity index (SSIM) of 0.862, and signal-to-reconstruction error ratio (SRE) of 36.7 dB on Sentinel-2 RGB bands. The proposed method outperforms state-of-the-art approaches, including ResNet, Swin Transformer, and ViT, on benchmark datasets (Sentinel-2, AID, and UC-Merced). The results demonstrate that the proposed method achieves superior performance in terms of PSNR, SSIM, and SRE metrics, highlighting its effectiveness in revealing finer spatial details and improving image quality for practical remote sensing applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信