Onboard Processing of Hyperspectral Imagery: Deep Learning Advancements, Methodologies, Challenges, and Emerging Trends

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nafiseh Ghasemi;Jon Alvarez Justo;Marco Celesti;Laurent Despoisse;Jens Nieke
{"title":"Onboard Processing of Hyperspectral Imagery: Deep Learning Advancements, Methodologies, Challenges, and Emerging Trends","authors":"Nafiseh Ghasemi;Jon Alvarez Justo;Marco Celesti;Laurent Despoisse;Jens Nieke","doi":"10.1109/JSTARS.2025.3527898","DOIUrl":null,"url":null,"abstract":"Recent advancements in deep learning techniques have spurred considerable interest in their application to hyperspectral imagery processing. This article provides a comprehensive review of the latest developments in this field, focusing on methodologies, challenges, and emerging trends. Deep learning architectures, such as convolutional neural networks (CNNs), autoencoders, deep belief networks, generative adverserial networks (GANs), and recurrent neural networks are examined for their suitability in processing hyperspectral data. Key challenges, including limited training data and computational constraints, are identified, along with strategies, such as data augmentation and noise reduction using GANs. This article discusses the efficacy of different network architectures, highlighting the advantages of lightweight CNN models and 1D-CNNs for onboard processing. Moreover, the potential of hardware accelerators, particularly field programmable gate arrays, for enhancing processing efficiency is explored. This review concludes with insights into ongoing research trends, including the integration of deep learning techniques into Earth observation missions, such as the Copernicus hyperspectral imaging mission for the environment mission, and emphasizes the need for further exploration and refinement of deep learning methodologies to address the evolving demands of hyperspectral image processing.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"4780-4790"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10834581","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10834581/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in deep learning techniques have spurred considerable interest in their application to hyperspectral imagery processing. This article provides a comprehensive review of the latest developments in this field, focusing on methodologies, challenges, and emerging trends. Deep learning architectures, such as convolutional neural networks (CNNs), autoencoders, deep belief networks, generative adverserial networks (GANs), and recurrent neural networks are examined for their suitability in processing hyperspectral data. Key challenges, including limited training data and computational constraints, are identified, along with strategies, such as data augmentation and noise reduction using GANs. This article discusses the efficacy of different network architectures, highlighting the advantages of lightweight CNN models and 1D-CNNs for onboard processing. Moreover, the potential of hardware accelerators, particularly field programmable gate arrays, for enhancing processing efficiency is explored. This review concludes with insights into ongoing research trends, including the integration of deep learning techniques into Earth observation missions, such as the Copernicus hyperspectral imaging mission for the environment mission, and emphasizes the need for further exploration and refinement of deep learning methodologies to address the evolving demands of hyperspectral image processing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信