{"title":"Mental Workload Assessment Using Deep Learning Models From EEG Signals: A Systematic Review","authors":"Kunjira Kingphai;Yashar Moshfeghi","doi":"10.1109/TCDS.2024.3460750","DOIUrl":null,"url":null,"abstract":"Mental workload (MWL) assessment is crucial in information systems (IS), impacting task performance, user experience, and system effectiveness. Deep learning offers promising techniques for MWL classification using electroencephalography (EEG), which monitors cognitive states dynamically and unobtrusively. Our research explores deep learning's potential and challenges in EEG-based MWL classification, focusing on training inputs, cross-validation methods, and classification problem types. We identify five types of EEG-based MWL classification: within-subject, cross subject, cross session, cross task, and combined cross task and cross subject. Success depends on managing dataset uniqueness, session and task variability, and artifact removal. Despite the potential, real-world applications are limited. Enhancements are necessary for self-reporting methods, universal preprocessing standards, and MWL assessment accuracy. Specifically, inaccuracies are inflated when data are shuffled before splitting to train and test sets, disrupting EEG signals’ temporal sequence. In contrast, methods such as the time-series cross validation and leave-session-out approach better preserve temporal integrity, offering more accurate model performance evaluations. Utilizing deep learning for EEG-based MWL assessment could significantly improve IS functionality and adaptability in real time based on user cognitive states.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 1","pages":"40-60"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10680430/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Mental workload (MWL) assessment is crucial in information systems (IS), impacting task performance, user experience, and system effectiveness. Deep learning offers promising techniques for MWL classification using electroencephalography (EEG), which monitors cognitive states dynamically and unobtrusively. Our research explores deep learning's potential and challenges in EEG-based MWL classification, focusing on training inputs, cross-validation methods, and classification problem types. We identify five types of EEG-based MWL classification: within-subject, cross subject, cross session, cross task, and combined cross task and cross subject. Success depends on managing dataset uniqueness, session and task variability, and artifact removal. Despite the potential, real-world applications are limited. Enhancements are necessary for self-reporting methods, universal preprocessing standards, and MWL assessment accuracy. Specifically, inaccuracies are inflated when data are shuffled before splitting to train and test sets, disrupting EEG signals’ temporal sequence. In contrast, methods such as the time-series cross validation and leave-session-out approach better preserve temporal integrity, offering more accurate model performance evaluations. Utilizing deep learning for EEG-based MWL assessment could significantly improve IS functionality and adaptability in real time based on user cognitive states.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.