Evolutionary Optimization for Proactive and Dynamic Computing Resource Allocation in Open Radio Access Network

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gan Ruan;Leandro L. Minku;Zhao Xu;Xin Yao
{"title":"Evolutionary Optimization for Proactive and Dynamic Computing Resource Allocation in Open Radio Access Network","authors":"Gan Ruan;Leandro L. Minku;Zhao Xu;Xin Yao","doi":"10.1109/TETCI.2024.3499997","DOIUrl":null,"url":null,"abstract":"In Open Radio Access Network (O-RAN), intelligent techniques are urged to achieve the automation of the computing resource allocation, so as to save computing resources and increase their utilization rate, as well as decrease the network delay. However, the existing formulation of this problem as an optimization problem defines the capacity utility of resource in an inappropriate way and it tends to cause much delay. Moreover, the only algorithm proposed to solve this problem is a greedy search algorithm, which is not ideal as it could get stuck into local optima. To overcome these issues, a new formulation that better describes the problem is proposed. In addition, an evolutionary algorithm (EA) is designed to find a resource allocation scheme to proactively and dynamically deploy the computing resource for processing upcoming traffic data. A multivariate long short-term memory model is used in the proposed EA to predict future traffic data for the production of deployment scheme. As a global search approach, the EA is less likely to get stuck in local optima than greed search, leading to better solutions. Experimental studies carried out on real-world datasets and artificially generated datasets with different scenarios and properties have demonstrated the significant superiority of our proposed EA over a baseline greedy algorithm under all parameter settings. Moreover, experimental studies with all afore-mentioned datasets are performed to compare the proposed EA and two variants under different parameter settings, to demonstrate the impact of different algorithm choices.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"1001-1018"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10794567/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In Open Radio Access Network (O-RAN), intelligent techniques are urged to achieve the automation of the computing resource allocation, so as to save computing resources and increase their utilization rate, as well as decrease the network delay. However, the existing formulation of this problem as an optimization problem defines the capacity utility of resource in an inappropriate way and it tends to cause much delay. Moreover, the only algorithm proposed to solve this problem is a greedy search algorithm, which is not ideal as it could get stuck into local optima. To overcome these issues, a new formulation that better describes the problem is proposed. In addition, an evolutionary algorithm (EA) is designed to find a resource allocation scheme to proactively and dynamically deploy the computing resource for processing upcoming traffic data. A multivariate long short-term memory model is used in the proposed EA to predict future traffic data for the production of deployment scheme. As a global search approach, the EA is less likely to get stuck in local optima than greed search, leading to better solutions. Experimental studies carried out on real-world datasets and artificially generated datasets with different scenarios and properties have demonstrated the significant superiority of our proposed EA over a baseline greedy algorithm under all parameter settings. Moreover, experimental studies with all afore-mentioned datasets are performed to compare the proposed EA and two variants under different parameter settings, to demonstrate the impact of different algorithm choices.
开放无线接入网络中主动与动态计算资源分配的进化优化
在开放无线接入网(O-RAN)中,为了节约计算资源,提高计算资源的利用率,降低网络延迟,需要智能技术来实现计算资源分配的自动化。然而,现有的将该问题作为优化问题的表述不恰当地定义了资源的容量效用,容易造成较大的延迟。此外,唯一提出的解决该问题的算法是贪婪搜索算法,它可能陷入局部最优,因此并不理想。为了克服这些问题,提出了一个更好地描述问题的新公式。此外,还设计了一种进化算法(EA),寻找一种资源分配方案,主动动态地部署计算资源,以处理即将到来的交通数据。提出了一种多变量长短期记忆模型,用于预测未来的交通数据,为部署方案的产生提供依据。作为一种全局搜索方法,EA不太可能陷入局部最优,而不是贪婪搜索,从而产生更好的解决方案。在真实世界数据集和具有不同场景和属性的人工生成数据集上进行的实验研究表明,我们提出的EA在所有参数设置下都优于基线贪婪算法。并在上述所有数据集上进行实验研究,比较不同参数设置下的EA和两种变体,以证明不同算法选择的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信