Advancing Coherent Power Grid Partitioning: A Review Embracing Machine and Deep Learning

IF 3.3 Q3 ENERGY & FUELS
Mohamed Massaoudi;Maymouna Ez Eddin;Ali Ghrayeb;Haitham Abu-Rub;Shady S. Refaat
{"title":"Advancing Coherent Power Grid Partitioning: A Review Embracing Machine and Deep Learning","authors":"Mohamed Massaoudi;Maymouna Ez Eddin;Ali Ghrayeb;Haitham Abu-Rub;Shady S. Refaat","doi":"10.1109/OAJPE.2025.3535709","DOIUrl":null,"url":null,"abstract":"With the escalating intricacy and expansion of the interconnected electrical grid, the likelihood of power system (PS) collapse has escalated dramatically. There is an increased emphasis on immunizing renewable-dominated power systems from large-scale cascading failures and cyberattacks through optimal power grid partitioning (PGP). By altering the network’s topology, partitioning aims to create areas within the PS that are not only robust but also have increased flexibility in generation and improved controllability over variable demand. This article provides an updated review of the cutting-edge machine learning and data-driven techniques used for PGP in networked PSs. To this end, an in-depth exploration of the basic principles of PGP and performance quantification is provided. The coherency adequacy and controlled islanding within the power network are comprehensively discussed. Subsequently, state-of-the-art research that envisions the use of clustering-based machine learning and deep learning-based solutions for PGP is presented. Finally, key research gaps and future directions for effective PGP are outlined. This paper provides PS researchers with a bird’s eye view of the current state of mainstream PGP implementations. Additionally, it assists stakeholders in selecting the most appropriate clustering algorithms for PGP applications.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"59-75"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855832","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10855832/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the escalating intricacy and expansion of the interconnected electrical grid, the likelihood of power system (PS) collapse has escalated dramatically. There is an increased emphasis on immunizing renewable-dominated power systems from large-scale cascading failures and cyberattacks through optimal power grid partitioning (PGP). By altering the network’s topology, partitioning aims to create areas within the PS that are not only robust but also have increased flexibility in generation and improved controllability over variable demand. This article provides an updated review of the cutting-edge machine learning and data-driven techniques used for PGP in networked PSs. To this end, an in-depth exploration of the basic principles of PGP and performance quantification is provided. The coherency adequacy and controlled islanding within the power network are comprehensively discussed. Subsequently, state-of-the-art research that envisions the use of clustering-based machine learning and deep learning-based solutions for PGP is presented. Finally, key research gaps and future directions for effective PGP are outlined. This paper provides PS researchers with a bird’s eye view of the current state of mainstream PGP implementations. Additionally, it assists stakeholders in selecting the most appropriate clustering algorithms for PGP applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信