Collaborative Edge-Cloud Data Transfer Optimization for Industrial Internet of Things

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Xinchang Zhang;Maoli Wang;Xiaomin Zhu;Zhiwei Yan;Guanggang Geng
{"title":"Collaborative Edge-Cloud Data Transfer Optimization for Industrial Internet of Things","authors":"Xinchang Zhang;Maoli Wang;Xiaomin Zhu;Zhiwei Yan;Guanggang Geng","doi":"10.1109/TPDS.2025.3532261","DOIUrl":null,"url":null,"abstract":"In the Industrial Internet of Things, it is necessary to reserve enough bandwidth resources according to the maximum traffic peak. However, bandwidth reservation based on the maximum traffic peak leads to low resource utilization. In this paper, we propose a data transfer optimization solution, based on the cooperation of different entities in the local area, which strives to deliver data acquired by sensors to the cloud in a reliable manner and improve bandwidth utilization to save limited network resources. In our solution, the data transfers from the sensors in a local network are controlled by a local controller and some edge gateways with acceptable cost such that no congestion occurs in the path to the cloud and the bandwidth requirement of each flow can be met. To obtain a tradeoff between resource utilization and transfer delay, we study the problem of minimizing the maximum rate peak of periodic real-time traffic from distributed sensors and propose an algorithm to solve this problem with a desirable lower boundary of the performance. In addition, we design an application-level forwarding method that significantly improves resource utilization and a method of implementing reliable sampling instant adjustment. The experimental results show that our solution significantly improves resource utilization without producing network congestion.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 3","pages":"580-597"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10848356/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In the Industrial Internet of Things, it is necessary to reserve enough bandwidth resources according to the maximum traffic peak. However, bandwidth reservation based on the maximum traffic peak leads to low resource utilization. In this paper, we propose a data transfer optimization solution, based on the cooperation of different entities in the local area, which strives to deliver data acquired by sensors to the cloud in a reliable manner and improve bandwidth utilization to save limited network resources. In our solution, the data transfers from the sensors in a local network are controlled by a local controller and some edge gateways with acceptable cost such that no congestion occurs in the path to the cloud and the bandwidth requirement of each flow can be met. To obtain a tradeoff between resource utilization and transfer delay, we study the problem of minimizing the maximum rate peak of periodic real-time traffic from distributed sensors and propose an algorithm to solve this problem with a desirable lower boundary of the performance. In addition, we design an application-level forwarding method that significantly improves resource utilization and a method of implementing reliable sampling instant adjustment. The experimental results show that our solution significantly improves resource utilization without producing network congestion.
面向工业物联网协同边缘云数据传输优化
在工业物联网中,需要根据最大流量峰值预留足够的带宽资源。但是,基于最大流量峰值预留带宽会导致资源利用率低。本文提出了一种基于局部不同实体协作的数据传输优化方案,力求将传感器采集的数据可靠地传输到云端,提高带宽利用率,节约有限的网络资源。在我们的解决方案中,来自本地网络中传感器的数据传输由本地控制器和一些成本可接受的边缘网关控制,这样在通往云的路径上不会发生拥塞,并且可以满足每个流的带宽要求。为了在资源利用率和传输延迟之间取得平衡,我们研究了分布式传感器周期性实时流量的最大速率峰值最小化问题,并提出了一种具有理想性能下限的算法来解决该问题。此外,我们设计了一种应用级转发方法,显著提高了资源利用率,并实现了可靠的采样即时调整方法。实验结果表明,该方案在不产生网络拥塞的情况下显著提高了资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信