LiteChain: A Lightweight Blockchain for Verifiable and Scalable Federated Learning in Massive Edge Networks

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Handi Chen;Rui Zhou;Yun-Hin Chan;Zhihan Jiang;Xianhao Chen;Edith C. H. Ngai
{"title":"LiteChain: A Lightweight Blockchain for Verifiable and Scalable Federated Learning in Massive Edge Networks","authors":"Handi Chen;Rui Zhou;Yun-Hin Chan;Zhihan Jiang;Xianhao Chen;Edith C. H. Ngai","doi":"10.1109/TMC.2024.3488746","DOIUrl":null,"url":null,"abstract":"Leveraging blockchain in Federated Learning (FL) emerges as a new paradigm for secure collaborative learning on Massive Edge Networks (MENs). As the scale of MENs increases, it becomes more difficult to implement and manage a blockchain among edge devices due to complex communication topologies, heterogeneous computation capabilities, and limited storage capacities. Moreover, the lack of a standard metric for blockchain security becomes a significant issue. To address these challenges, we propose a lightweight blockchain for verifiable and scalable FL, namely LiteChain, to provide efficient and secure services in MENs. Specifically, we develop a distributed clustering algorithm to reorganize MENs into a two-level structure to improve communication and computing efficiency under security requirements. Moreover, we introduce a Comprehensive Byzantine Fault Tolerance (CBFT) consensus mechanism and a secure update mechanism to ensure the security of model transactions through LiteChain. Our experiments based on Hyperledger Fabric demonstrate that LiteChain presents the lowest end-to-end latency and on-chain storage overheads across various network scales, outperforming the other two benchmarks. In addition, LiteChain exhibits a high level of robustness against replay and data poisoning attacks.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"1928-1944"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740312/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Leveraging blockchain in Federated Learning (FL) emerges as a new paradigm for secure collaborative learning on Massive Edge Networks (MENs). As the scale of MENs increases, it becomes more difficult to implement and manage a blockchain among edge devices due to complex communication topologies, heterogeneous computation capabilities, and limited storage capacities. Moreover, the lack of a standard metric for blockchain security becomes a significant issue. To address these challenges, we propose a lightweight blockchain for verifiable and scalable FL, namely LiteChain, to provide efficient and secure services in MENs. Specifically, we develop a distributed clustering algorithm to reorganize MENs into a two-level structure to improve communication and computing efficiency under security requirements. Moreover, we introduce a Comprehensive Byzantine Fault Tolerance (CBFT) consensus mechanism and a secure update mechanism to ensure the security of model transactions through LiteChain. Our experiments based on Hyperledger Fabric demonstrate that LiteChain presents the lowest end-to-end latency and on-chain storage overheads across various network scales, outperforming the other two benchmarks. In addition, LiteChain exhibits a high level of robustness against replay and data poisoning attacks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信