{"title":"Harvesting Physical-Layer Randomness in Millimeter Wave Bands","authors":"Ziqi Xu;Jingcheng Li;Yanjun Pan;Ming Li;Loukas Lazos","doi":"10.1109/TMC.2024.3499876","DOIUrl":null,"url":null,"abstract":"The unpredictability of the wireless channel has been used as a natural source of randomness to build physical-layer security primitives for shared key generation, authentication, access control, proximity verification, and other security properties. Compared to pseudo-random generators, it has the potential to achieve information-theoretic security. In sub-6 GHz frequencies, the randomness is harvested from the small-scale fading effects of RF signal propagation in rich scattering environments. However, the RF propagation characteristics follow sparse models with clustered paths when devices operate in millimeter-wave (mmWave) bands (5G and Next-Generation networks, Wi-Fi in 60GHz). Millimeter-wave transmissions are typically directional to increase the gain and combat high signal attenuation, leading to stable and more predictable channels. In this paper, we first demonstrate that state-of-the-art methods relying on channel state information or received signal strength measurements fail to produce high randomness. Accounting for the unique features of mmWave propagation, we propose a novel randomness extraction mechanism that exploits the random timing of channel blockage to harvest random bits. Compared with the prior art in CSI-based and context-based randomness extraction, our protocol remains secure against <italic>passive and active Man-in-the-Middle adversaries co-located with the legitimate devices</i>. We demonstrate the security properties of our method in a 28 GHz mmWave testbed in an indoor setting.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"2285-2300"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10753510/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The unpredictability of the wireless channel has been used as a natural source of randomness to build physical-layer security primitives for shared key generation, authentication, access control, proximity verification, and other security properties. Compared to pseudo-random generators, it has the potential to achieve information-theoretic security. In sub-6 GHz frequencies, the randomness is harvested from the small-scale fading effects of RF signal propagation in rich scattering environments. However, the RF propagation characteristics follow sparse models with clustered paths when devices operate in millimeter-wave (mmWave) bands (5G and Next-Generation networks, Wi-Fi in 60GHz). Millimeter-wave transmissions are typically directional to increase the gain and combat high signal attenuation, leading to stable and more predictable channels. In this paper, we first demonstrate that state-of-the-art methods relying on channel state information or received signal strength measurements fail to produce high randomness. Accounting for the unique features of mmWave propagation, we propose a novel randomness extraction mechanism that exploits the random timing of channel blockage to harvest random bits. Compared with the prior art in CSI-based and context-based randomness extraction, our protocol remains secure against passive and active Man-in-the-Middle adversaries co-located with the legitimate devices. We demonstrate the security properties of our method in a 28 GHz mmWave testbed in an indoor setting.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.