Privacy-Preserving Federated Neural Architecture Search With Enhanced Robustness for Edge Computing

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Feifei Zhang;Mao Li;Jidong Ge;Fenghui Tang;Sheng Zhang;Jie Wu;Bin Luo
{"title":"Privacy-Preserving Federated Neural Architecture Search With Enhanced Robustness for Edge Computing","authors":"Feifei Zhang;Mao Li;Jidong Ge;Fenghui Tang;Sheng Zhang;Jie Wu;Bin Luo","doi":"10.1109/TMC.2024.3490835","DOIUrl":null,"url":null,"abstract":"With the development of large-scale artificial intelligence services, edge devices are becoming essential providers of data and computing power. However, these edge devices are not immune to malicious attacks. Federated learning (FL), while protecting privacy of decentralized data through secure aggregation, struggles to trace adversaries and lacks optimization for heterogeneity. We discover that FL augmented with Differentiable Architecture Search (DARTS) can improve resilience against backdoor attacks while compatible with secure aggregation. Based on this, we propose a federated neural architecture search (NAS) framwork named SLNAS. The architecture of SLNAS is built on three pivotal components: a server-side search space generation method that employs an evolutionary algorithm with dual encodings, a federated NAS process based on DARTS, and client-side architecture tuning that utilizes Gumbel softmax combined with knowledge distillation. To validate robustness, we adapt a framework that includes backdoor attacks based on trigger optimization, data poisoning, and model poisoning, targeting both model weights and architecture parameters. Extensive experiments demonstrate that SLNAS not only effectively counters advanced backdoor attacks but also handles heterogeneity, outperforming defense baselines across a wide range of backdoor attack scenarios.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"2234-2252"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10742476/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of large-scale artificial intelligence services, edge devices are becoming essential providers of data and computing power. However, these edge devices are not immune to malicious attacks. Federated learning (FL), while protecting privacy of decentralized data through secure aggregation, struggles to trace adversaries and lacks optimization for heterogeneity. We discover that FL augmented with Differentiable Architecture Search (DARTS) can improve resilience against backdoor attacks while compatible with secure aggregation. Based on this, we propose a federated neural architecture search (NAS) framwork named SLNAS. The architecture of SLNAS is built on three pivotal components: a server-side search space generation method that employs an evolutionary algorithm with dual encodings, a federated NAS process based on DARTS, and client-side architecture tuning that utilizes Gumbel softmax combined with knowledge distillation. To validate robustness, we adapt a framework that includes backdoor attacks based on trigger optimization, data poisoning, and model poisoning, targeting both model weights and architecture parameters. Extensive experiments demonstrate that SLNAS not only effectively counters advanced backdoor attacks but also handles heterogeneity, outperforming defense baselines across a wide range of backdoor attack scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信