PipeSFL: A Fine-Grained Parallelization Framework for Split Federated Learning on Heterogeneous Clients

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yunqi Gao;Bing Hu;Mahdi Boloursaz Mashhadi;Wei Wang;Mehdi Bennis
{"title":"PipeSFL: A Fine-Grained Parallelization Framework for Split Federated Learning on Heterogeneous Clients","authors":"Yunqi Gao;Bing Hu;Mahdi Boloursaz Mashhadi;Wei Wang;Mehdi Bennis","doi":"10.1109/TMC.2024.3489642","DOIUrl":null,"url":null,"abstract":"Split Federated Learning (SFL) improves scalability of Split Learning (SL) by enabling parallel computing of the learning tasks on multiple clients. However, state-of-the-art SFL schemes neglect the effects of heterogeneity in the clients’ computation and communication performance as well as the computation time for the tasks offloaded to the cloud server. In this paper, we propose a fine-grained parallelization framework, called PipeSFL, to accelerate SFL on heterogeneous clients. PipeSFL is based on two key novel ideas. First, we design a server-side priority scheduling mechanism to minimize per-iteration time. Second, we propose a hybrid training mode to reduce per-round time, which employs asynchronous training within rounds and synchronous training between rounds. We theoretically prove the optimality of the proposed priority scheduling mechanism within one round and analyze the total time per round for PipeSFL, SFL and SL. We implement PipeSFL on PyTorch. Extensive experiments on seven 64-client clusters with different heterogeneity demonstrate that at training speed, PipeSFL achieves up to 1.65x and 1.93x speedup compared to EPSL and SFL, respectively. At energy consumption, PipeSFL saves up to 30.8% and 43.4% of the energy consumed within each training round compared to EPSL and SFL, respectively.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"1774-1791"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740645/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Split Federated Learning (SFL) improves scalability of Split Learning (SL) by enabling parallel computing of the learning tasks on multiple clients. However, state-of-the-art SFL schemes neglect the effects of heterogeneity in the clients’ computation and communication performance as well as the computation time for the tasks offloaded to the cloud server. In this paper, we propose a fine-grained parallelization framework, called PipeSFL, to accelerate SFL on heterogeneous clients. PipeSFL is based on two key novel ideas. First, we design a server-side priority scheduling mechanism to minimize per-iteration time. Second, we propose a hybrid training mode to reduce per-round time, which employs asynchronous training within rounds and synchronous training between rounds. We theoretically prove the optimality of the proposed priority scheduling mechanism within one round and analyze the total time per round for PipeSFL, SFL and SL. We implement PipeSFL on PyTorch. Extensive experiments on seven 64-client clusters with different heterogeneity demonstrate that at training speed, PipeSFL achieves up to 1.65x and 1.93x speedup compared to EPSL and SFL, respectively. At energy consumption, PipeSFL saves up to 30.8% and 43.4% of the energy consumed within each training round compared to EPSL and SFL, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信