REM: Enabling Real-Time Neural-Enhanced Video Streaming on Mobile Devices Using Macroblock-Aware Lookup Table

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Baili Chai;Di Wu;Jinyu Chen;Mengyu Yang;Zelong Wang;Miao Hu
{"title":"REM: Enabling Real-Time Neural-Enhanced Video Streaming on Mobile Devices Using Macroblock-Aware Lookup Table","authors":"Baili Chai;Di Wu;Jinyu Chen;Mengyu Yang;Zelong Wang;Miao Hu","doi":"10.1109/TMC.2024.3496443","DOIUrl":null,"url":null,"abstract":"The demand for mobile video streaming has seen a substantial surge in recent years. However, current platforms heavily depend on network capacity to ensure the delivery of high-quality video streams. The emergence of neural-enhanced video streaming presents a promising solution to address this challenge by leveraging client-side computation, thereby reducing bandwidth consumption. Nonetheless, deploying advanced super-resolution (SR) models on mobile devices is hindered by the computational demands of existing SR models. In this paper, we propose REM, a novel neural-enhanced mobile video streaming framework. REM utilizes a customized lookup table to facilitate real-time neural-enhanced video streaming on mobile devices. Initially, we conduct a series of measurements to identify abundant macroblock redundancies across frames in a video stream. Subsequently, we introduce a dynamic macroblock selection algorithm that prioritizes important macroblocks for neural enhancement. The SR-enhanced results are stored in the lookup table and efficiently reused to meet real-time requirements and minimize resource overhead. By considering macroblock-level characteristics of the video frames, the lookup table enables efficient and fast processing. Additionally, we design a lightweight macroblock-aware SR module to expedite inference. Finally, we perform extensive experiments on various mobile devices. The results demonstrate that REM enhances overall processing throughput by up to 10.2 times and reduces power consumption by up to 58.6% compared to state-of-the-art methods. Consequently, this leads to a 38.06% improvement in the quality of experience for mobile users.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"2085-2097"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750425/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for mobile video streaming has seen a substantial surge in recent years. However, current platforms heavily depend on network capacity to ensure the delivery of high-quality video streams. The emergence of neural-enhanced video streaming presents a promising solution to address this challenge by leveraging client-side computation, thereby reducing bandwidth consumption. Nonetheless, deploying advanced super-resolution (SR) models on mobile devices is hindered by the computational demands of existing SR models. In this paper, we propose REM, a novel neural-enhanced mobile video streaming framework. REM utilizes a customized lookup table to facilitate real-time neural-enhanced video streaming on mobile devices. Initially, we conduct a series of measurements to identify abundant macroblock redundancies across frames in a video stream. Subsequently, we introduce a dynamic macroblock selection algorithm that prioritizes important macroblocks for neural enhancement. The SR-enhanced results are stored in the lookup table and efficiently reused to meet real-time requirements and minimize resource overhead. By considering macroblock-level characteristics of the video frames, the lookup table enables efficient and fast processing. Additionally, we design a lightweight macroblock-aware SR module to expedite inference. Finally, we perform extensive experiments on various mobile devices. The results demonstrate that REM enhances overall processing throughput by up to 10.2 times and reduces power consumption by up to 58.6% compared to state-of-the-art methods. Consequently, this leads to a 38.06% improvement in the quality of experience for mobile users.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信