{"title":"Practical frequency-hopping MIMO joint radar communications: Design and experiment","authors":"Jiangtao Liu , Kai Wu , Tao Su , J. Andrew Zhang","doi":"10.1016/j.dcan.2023.12.008","DOIUrl":null,"url":null,"abstract":"<div><div>Joint Radar and Communications (JRC) can implement two Radio Frequency (RF) functions using a single of resources, providing significant hardware, power and spectrum savings for wireless systems requiring both functions. Frequency-Hopping (FH) MIMO radar is a popular candidate for JRC because the achieved communication symbol rate can greatly exceed the radar pulse repetition frequency. However, practical transceiver imperfections can cause many existing theoretical designs to fail. In this work, we reveal for the first time the non-trivial impact of hardware imperfections on FH-MIMO JRC and model the impact analytically. We also design new waveforms and correspondingly develop a low-complexity algorithm to jointly estimate the hardware imperfections of unsynchronized receiver. In addition, using low-cost software-defined radios and Commercial Off-The-Shelf (COTS) products, we build the first FH-MIMO JRC experimental platform with simultaneous over-the-air radar and communication validation. Confirmed by simulation and experimental results, the proposed designs achieve high performance for both radar and communications.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1904-1914"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001852","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Joint Radar and Communications (JRC) can implement two Radio Frequency (RF) functions using a single of resources, providing significant hardware, power and spectrum savings for wireless systems requiring both functions. Frequency-Hopping (FH) MIMO radar is a popular candidate for JRC because the achieved communication symbol rate can greatly exceed the radar pulse repetition frequency. However, practical transceiver imperfections can cause many existing theoretical designs to fail. In this work, we reveal for the first time the non-trivial impact of hardware imperfections on FH-MIMO JRC and model the impact analytically. We also design new waveforms and correspondingly develop a low-complexity algorithm to jointly estimate the hardware imperfections of unsynchronized receiver. In addition, using low-cost software-defined radios and Commercial Off-The-Shelf (COTS) products, we build the first FH-MIMO JRC experimental platform with simultaneous over-the-air radar and communication validation. Confirmed by simulation and experimental results, the proposed designs achieve high performance for both radar and communications.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.