GeO2 – ZnO nanocomposite rosettes for enhancement of performance in energy technologies: Coupling organic templated synthesis with microwave treatment

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Shaan Bibi Jaffri , Khuram Shahzad Ahmad , Isaac Abrahams , Wahidah H. Al-Qahtani
{"title":"GeO2 – ZnO nanocomposite rosettes for enhancement of performance in energy technologies: Coupling organic templated synthesis with microwave treatment","authors":"Shaan Bibi Jaffri ,&nbsp;Khuram Shahzad Ahmad ,&nbsp;Isaac Abrahams ,&nbsp;Wahidah H. Al-Qahtani","doi":"10.1016/j.physe.2025.116198","DOIUrl":null,"url":null,"abstract":"<div><div>Current study introduces first report on the sustainable synthesis of GeO<sub>2</sub> – ZnO nano-hetero-system copulated with the microwave treatment. GeO<sub>2</sub> – ZnO has been effectively tuned for the band gap causing an alleviation from 4.89 to 2.89 eV upon the nanocomposite formation. With the hexagonal phase, GeO<sub>2</sub> – ZnO possessed an average crystallite size of the 62.11 nm. These particles existed as nano-rossettes with the uniform upward projection. The catalytic performance of the synthesized material was more inclined towards pure hydrogen generation with the lower overpotential (<em>η</em><sub><em>HER</em></sub><em>)</em> and Tafel slopes <em>i.e.</em> 128 mV and 121.9 mV dec<sup>−1</sup>. GeO<sub>2</sub> – ZnO nano-rossettes bedecked electrode remained unscathed for a prolonged duration of the 1500 min and demonstrated commendable charge storage with the unit capacity of 384 mAH g<sup>−1</sup>. As a passivation layer in perovskite solar cells, these nanomaterials improved efficiency up to 15 % by prevention of the charge aggregation.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"169 ","pages":"Article 116198"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000232","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Current study introduces first report on the sustainable synthesis of GeO2 – ZnO nano-hetero-system copulated with the microwave treatment. GeO2 – ZnO has been effectively tuned for the band gap causing an alleviation from 4.89 to 2.89 eV upon the nanocomposite formation. With the hexagonal phase, GeO2 – ZnO possessed an average crystallite size of the 62.11 nm. These particles existed as nano-rossettes with the uniform upward projection. The catalytic performance of the synthesized material was more inclined towards pure hydrogen generation with the lower overpotential (ηHER) and Tafel slopes i.e. 128 mV and 121.9 mV dec−1. GeO2 – ZnO nano-rossettes bedecked electrode remained unscathed for a prolonged duration of the 1500 min and demonstrated commendable charge storage with the unit capacity of 384 mAH g−1. As a passivation layer in perovskite solar cells, these nanomaterials improved efficiency up to 15 % by prevention of the charge aggregation.

Abstract Image

用于增强能源技术性能的GeO2 - ZnO纳米复合花环:有机模板化合成与微波处理耦联
本研究介绍了微波处理下可持续合成GeO2 - ZnO纳米异质体系的首次报道。在纳米复合材料形成时,GeO2 - ZnO有效地调整了带隙,使带隙从4.89 eV减轻到2.89 eV。在六方相中,GeO2 - ZnO的平均晶粒尺寸为62.11 nm。这些粒子以纳米玫瑰花的形式存在,呈均匀向上的投影。合成的材料具有较低的过电位(η - her)和Tafel斜率(128 mV和121.9 mV dec−1),催化性能更倾向于生成纯氢。GeO2 - ZnO纳米玫瑰花包覆电极在1500 min的长时间内保持完好无损,并表现出良好的电荷存储能力,单位容量为384 mAH g−1。作为钙钛矿太阳能电池的钝化层,这些纳米材料通过防止电荷聚集将效率提高了15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信