{"title":"Efficient coupling of within-and between-host infectious disease dynamics","authors":"Cameron A. Smith , Ben Ashby","doi":"10.1016/j.jtbi.2025.112061","DOIUrl":null,"url":null,"abstract":"<div><div>Mathematical models of infectious disease transmission typically neglect within-host dynamics. Yet within-host dynamics – including pathogen replication, host immune responses, and interactions with microbiota – are crucial not only for determining the progression of disease at the individual level, but also for driving within-host evolution and onwards transmission, and therefore shape dynamics at the population level. Various approaches have been proposed to model both within- and between-host dynamics, but these typically require considerable simplifying assumptions to couple processes at contrasting scales (e.g., the within-host dynamics quickly reach a steady state) or are computationally intensive. Here we propose a novel, readily adaptable and broadly applicable method for modelling both within- and between-host processes which can fully couple dynamics across scales and is both realistic and computationally efficient. By individually tracking the deterministic within-host dynamics of infected individuals, and stochastically coupling these to continuous host state variables at the population-level, we take advantage of fast numerical methods at both scales while still capturing individual transient within-host dynamics and stochasticity in transmission between hosts. Our approach closely agrees with full stochastic individual-based simulations and is especially useful when the within-host dynamics do not rapidly reach a steady state or over longer timescales to track pathogen evolution. By applying our method to different pathogen growth scenarios we show how common simplifying assumptions fundamentally change epidemiological and evolutionary dynamics.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"602 ","pages":"Article 112061"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002251932500027X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical models of infectious disease transmission typically neglect within-host dynamics. Yet within-host dynamics – including pathogen replication, host immune responses, and interactions with microbiota – are crucial not only for determining the progression of disease at the individual level, but also for driving within-host evolution and onwards transmission, and therefore shape dynamics at the population level. Various approaches have been proposed to model both within- and between-host dynamics, but these typically require considerable simplifying assumptions to couple processes at contrasting scales (e.g., the within-host dynamics quickly reach a steady state) or are computationally intensive. Here we propose a novel, readily adaptable and broadly applicable method for modelling both within- and between-host processes which can fully couple dynamics across scales and is both realistic and computationally efficient. By individually tracking the deterministic within-host dynamics of infected individuals, and stochastically coupling these to continuous host state variables at the population-level, we take advantage of fast numerical methods at both scales while still capturing individual transient within-host dynamics and stochasticity in transmission between hosts. Our approach closely agrees with full stochastic individual-based simulations and is especially useful when the within-host dynamics do not rapidly reach a steady state or over longer timescales to track pathogen evolution. By applying our method to different pathogen growth scenarios we show how common simplifying assumptions fundamentally change epidemiological and evolutionary dynamics.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.