High-order accurate structure-preserving finite volume schemes on adaptive moving meshes for shallow water equations: Well-balancedness and positivity

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhihao Zhang , Huazhong Tang , Kailiang Wu
{"title":"High-order accurate structure-preserving finite volume schemes on adaptive moving meshes for shallow water equations: Well-balancedness and positivity","authors":"Zhihao Zhang ,&nbsp;Huazhong Tang ,&nbsp;Kailiang Wu","doi":"10.1016/j.jcp.2025.113801","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops high-order accurate, well-balanced (WB), and positivity-preserving (PP) finite volume schemes for shallow water equations on adaptive moving structured meshes. The mesh movement poses new challenges in maintaining the WB property, which not only depends on the balance between flux gradients and source terms but is also affected by the mesh movement. To address these complexities, the WB property in curvilinear coordinates is decomposed into flux source balance and mesh movement balance. The flux source balance is achieved by suitable decomposition of the source terms, the numerical fluxes based on hydrostatic reconstruction, and appropriate discretization of the geometric conservation laws (GCLs). Concurrently, the mesh movement balance is maintained by integrating additional schemes to update the bottom topography during mesh adjustments. The proposed schemes are rigorously proven to maintain the WB property by using the discrete GCLs and these two balances. We provide rigorous analyses of the PP property under a sufficient condition enforced by a PP limiter. Due to the involvement of mesh metrics and movement, the analyses are nontrivial, while some standard techniques, such as splitting high-order schemes into convex combinations of formally first-order PP schemes, are not directly applicable. Various numerical examples validate the high-order accuracy, high efficiency, WB, and PP properties of the proposed schemes.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"527 ","pages":"Article 113801"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125000841","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops high-order accurate, well-balanced (WB), and positivity-preserving (PP) finite volume schemes for shallow water equations on adaptive moving structured meshes. The mesh movement poses new challenges in maintaining the WB property, which not only depends on the balance between flux gradients and source terms but is also affected by the mesh movement. To address these complexities, the WB property in curvilinear coordinates is decomposed into flux source balance and mesh movement balance. The flux source balance is achieved by suitable decomposition of the source terms, the numerical fluxes based on hydrostatic reconstruction, and appropriate discretization of the geometric conservation laws (GCLs). Concurrently, the mesh movement balance is maintained by integrating additional schemes to update the bottom topography during mesh adjustments. The proposed schemes are rigorously proven to maintain the WB property by using the discrete GCLs and these two balances. We provide rigorous analyses of the PP property under a sufficient condition enforced by a PP limiter. Due to the involvement of mesh metrics and movement, the analyses are nontrivial, while some standard techniques, such as splitting high-order schemes into convex combinations of formally first-order PP schemes, are not directly applicable. Various numerical examples validate the high-order accuracy, high efficiency, WB, and PP properties of the proposed schemes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信