Real-time unsupervised video object detection on the edge

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Paula Ruiz-Barroso, Francisco M. Castro, Nicolás Guil
{"title":"Real-time unsupervised video object detection on the edge","authors":"Paula Ruiz-Barroso,&nbsp;Francisco M. Castro,&nbsp;Nicolás Guil","doi":"10.1016/j.future.2025.107737","DOIUrl":null,"url":null,"abstract":"<div><div>Object detection in video is an essential computer vision task. Consequently, many efforts have been devoted to developing precise and fast deep-learning models for this task. These models are commonly deployed on discrete and powerful GPU devices to meet both frame rate performance and detection accuracy requirements. Furthermore, model training is usually performed in a strongly supervised way so that samples must be previously labelled by humans using a slow and costly process. In this paper, we develop a real-time implementation for unsupervised object detection in video employing a low-power device. We improve typical approaches for object detection using information supplied by optical flow to detect moving objects. Besides, we use an unsupervised clustering algorithm to group similar detections that avoid manual object labelling. Finally, we propose a methodology to optimize the deployment of our resulting framework on an embedded heterogeneous platform. Thus, we illustrate how all the computational resources of a Jetson AGX Xavier (CPU, GPU, and DLAs) can be used to fulfil frame rate, accuracy, and energy consumption requirements. Three different data representations (FP32, FP16 and INT8) are studied for the pipeline networks in order to evaluate the impact of all of them in our pipeline. Obtained results show that our proposed optimizations can improve up to <span><math><mrow><mn>23</mn><mo>.</mo><mn>6</mn><mo>×</mo></mrow></math></span> energy consumption and <span><math><mrow><mn>32</mn><mo>.</mo><mn>2</mn><mo>×</mo></mrow></math></span> execution time with respect to the non-optimized pipeline without penalizing the original mAP (59.44). This computational complexity reduction is achieved through knowledge distillation, using FP16 data precision, and deploying concurrent tasks in different computing units.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"167 ","pages":"Article 107737"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000329","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection in video is an essential computer vision task. Consequently, many efforts have been devoted to developing precise and fast deep-learning models for this task. These models are commonly deployed on discrete and powerful GPU devices to meet both frame rate performance and detection accuracy requirements. Furthermore, model training is usually performed in a strongly supervised way so that samples must be previously labelled by humans using a slow and costly process. In this paper, we develop a real-time implementation for unsupervised object detection in video employing a low-power device. We improve typical approaches for object detection using information supplied by optical flow to detect moving objects. Besides, we use an unsupervised clustering algorithm to group similar detections that avoid manual object labelling. Finally, we propose a methodology to optimize the deployment of our resulting framework on an embedded heterogeneous platform. Thus, we illustrate how all the computational resources of a Jetson AGX Xavier (CPU, GPU, and DLAs) can be used to fulfil frame rate, accuracy, and energy consumption requirements. Three different data representations (FP32, FP16 and INT8) are studied for the pipeline networks in order to evaluate the impact of all of them in our pipeline. Obtained results show that our proposed optimizations can improve up to 23.6× energy consumption and 32.2× execution time with respect to the non-optimized pipeline without penalizing the original mAP (59.44). This computational complexity reduction is achieved through knowledge distillation, using FP16 data precision, and deploying concurrent tasks in different computing units.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信