Using convolutional network in graphical model detection of autism disorders with fuzzy inference systems

S. Rajaprakash , C. Bagath Basha , C. Sunitha Ram , I. Ameethbasha , V. Subapriya , R. Sofia
{"title":"Using convolutional network in graphical model detection of autism disorders with fuzzy inference systems","authors":"S. Rajaprakash ,&nbsp;C. Bagath Basha ,&nbsp;C. Sunitha Ram ,&nbsp;I. Ameethbasha ,&nbsp;V. Subapriya ,&nbsp;R. Sofia","doi":"10.1016/j.ibmed.2025.100213","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) study faces several challenges, including variations in brain connectivity patterns, small sample sizes, and data heterogeneity detection by magnetic resonance imaging (MRI). These issues make it challenging to identify consistent imaging modalities. Researchers have explored improved analysis techniques to solve the above problem via multimodal imaging and graph-based methods. Therefore, it is better to understand ASD neurology. The current techniques focus mainly on pairwise comparisons between individuals and often overlook features and individual characteristics. To overcome these limitations, in the proposed novel method, a multiscale enhanced graph with a convolutional network is used for ASD detection.</div><div>This work integrates non-imaging phenotypic data (from brain imaging data) with functional connectivity data (from Functional magnetic resonance images). In this approach, the population graph represents all individuals as vertices. The phenotypic data were used to calculate the weight between vertices in the graph using the fuzzy inference system. Fuzzy if-then rules, is used to determine the similarity between the phenotypic data. Each vertice connects feature vectors derived from the image data. The vertices and weights of each edge are used to incorporate phenotypic information. A random walk with a fuzzy MSE-GCN framework employs multiple parallel GCN layer embeddings. The outputs from these layers are joined in a completely linked layer to detect ASD efficiently. We assessed the performance of this background by the ABIDE data set and utilized recursive feature elimination and a multilayer perceptron for feature selection. This method achieved an accuracy rate of 87 % better than the current study.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100213"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652122500016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autism spectrum disorder (ASD) study faces several challenges, including variations in brain connectivity patterns, small sample sizes, and data heterogeneity detection by magnetic resonance imaging (MRI). These issues make it challenging to identify consistent imaging modalities. Researchers have explored improved analysis techniques to solve the above problem via multimodal imaging and graph-based methods. Therefore, it is better to understand ASD neurology. The current techniques focus mainly on pairwise comparisons between individuals and often overlook features and individual characteristics. To overcome these limitations, in the proposed novel method, a multiscale enhanced graph with a convolutional network is used for ASD detection.
This work integrates non-imaging phenotypic data (from brain imaging data) with functional connectivity data (from Functional magnetic resonance images). In this approach, the population graph represents all individuals as vertices. The phenotypic data were used to calculate the weight between vertices in the graph using the fuzzy inference system. Fuzzy if-then rules, is used to determine the similarity between the phenotypic data. Each vertice connects feature vectors derived from the image data. The vertices and weights of each edge are used to incorporate phenotypic information. A random walk with a fuzzy MSE-GCN framework employs multiple parallel GCN layer embeddings. The outputs from these layers are joined in a completely linked layer to detect ASD efficiently. We assessed the performance of this background by the ABIDE data set and utilized recursive feature elimination and a multilayer perceptron for feature selection. This method achieved an accuracy rate of 87 % better than the current study.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信