A Q-learning-based improved multi-objective genetic algorithm for solving distributed heterogeneous assembly flexible job shop scheduling problems with transfers

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Zhijie Yang , Xinkai Hu , Yibing Li , Muxi Liang , Kaipu Wang , Lei Wang , Hongtao Tang , Shunsheng Guo
{"title":"A Q-learning-based improved multi-objective genetic algorithm for solving distributed heterogeneous assembly flexible job shop scheduling problems with transfers","authors":"Zhijie Yang ,&nbsp;Xinkai Hu ,&nbsp;Yibing Li ,&nbsp;Muxi Liang ,&nbsp;Kaipu Wang ,&nbsp;Lei Wang ,&nbsp;Hongtao Tang ,&nbsp;Shunsheng Guo","doi":"10.1016/j.jmsy.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>With the advancement of economic globalization, the distributed heterogeneous factory environment has become the mainstream in manufacturing enterprises. Scheduling flexible job shops in such a production environment holds practical value. However, due to the high complexity of certain jobs, the transfer of jobs between different factories are often required in practical production to balance machine load rates. Accordingly, this study addresses the distributed heterogeneous assembly flexible job shop scheduling problem with transfers, aiming to minimize both the makespan and total energy consumption. First, a multi-objective optimization model is formulated to define the problem, wherein knowledge of factory assignment and processing sequence for operations is summarized. Subsequently, given the complexity of this problem, a Q-learning-based improved multi-objective genetic algorithm (QL-IMOGA) is proposed as an effective approach. Within the proposed algorithm, a hybrid population initialization method is designed, considering factory load balancing and the earliest product completion time, to generate a high-quality initial population. Furthermore, two types of crossover operators, four types of mutation operators, and six objective-oriented neighborhood search operators are devised to enhance the algorithm’s exploration and exploitation capabilities. Q-learning is employed for adaptive adjustment of key parameters to improve both convergence speed and solution quality. The effectiveness of the proposed population initialization method and neighborhood search operators is validated through 15 test cases. The results demonstrate that the proposed algorithm significantly outperformed four advanced meta-heuristic algorithms. Furthermore, it is observed that the solution employing the job transfer strategy led to an average reduction of 7.5 % in makespan, a 3.9 % decrease in total energy consumption, and an 8.4 % improvement in factory load rates compared to the solution using the job no-transfer strategy.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"79 ","pages":"Pages 398-418"},"PeriodicalIF":12.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000329","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of economic globalization, the distributed heterogeneous factory environment has become the mainstream in manufacturing enterprises. Scheduling flexible job shops in such a production environment holds practical value. However, due to the high complexity of certain jobs, the transfer of jobs between different factories are often required in practical production to balance machine load rates. Accordingly, this study addresses the distributed heterogeneous assembly flexible job shop scheduling problem with transfers, aiming to minimize both the makespan and total energy consumption. First, a multi-objective optimization model is formulated to define the problem, wherein knowledge of factory assignment and processing sequence for operations is summarized. Subsequently, given the complexity of this problem, a Q-learning-based improved multi-objective genetic algorithm (QL-IMOGA) is proposed as an effective approach. Within the proposed algorithm, a hybrid population initialization method is designed, considering factory load balancing and the earliest product completion time, to generate a high-quality initial population. Furthermore, two types of crossover operators, four types of mutation operators, and six objective-oriented neighborhood search operators are devised to enhance the algorithm’s exploration and exploitation capabilities. Q-learning is employed for adaptive adjustment of key parameters to improve both convergence speed and solution quality. The effectiveness of the proposed population initialization method and neighborhood search operators is validated through 15 test cases. The results demonstrate that the proposed algorithm significantly outperformed four advanced meta-heuristic algorithms. Furthermore, it is observed that the solution employing the job transfer strategy led to an average reduction of 7.5 % in makespan, a 3.9 % decrease in total energy consumption, and an 8.4 % improvement in factory load rates compared to the solution using the job no-transfer strategy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信