Effect of cooling rate on metallurgical and mechanical properties in continuous wave laser welding of hot-dip galvanised steel-to-aluminium sheets in a zero part-to-part gap lap joint configuration

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Baghbani Barenji , M.B. Russo , S. Jabar , H.R. Kotadia , D. Ceglarek , K.F. Ayarkwa , J.R. Smith , P. Franciosa
{"title":"Effect of cooling rate on metallurgical and mechanical properties in continuous wave laser welding of hot-dip galvanised steel-to-aluminium sheets in a zero part-to-part gap lap joint configuration","authors":"A. Baghbani Barenji ,&nbsp;M.B. Russo ,&nbsp;S. Jabar ,&nbsp;H.R. Kotadia ,&nbsp;D. Ceglarek ,&nbsp;K.F. Ayarkwa ,&nbsp;J.R. Smith ,&nbsp;P. Franciosa","doi":"10.1016/j.jajp.2025.100290","DOIUrl":null,"url":null,"abstract":"<div><div>Using a continuous wave (CW) laser with beam oscillation, this study elucidates the impact of passive and active cooling on welding hot-dip galvanised steel-to-aluminium sheets. The work investigates how cooling affects the formation of intermetallic compounds (IMCs) and the behaviour of Zn vapours, both of which are critical factors to the joint strength. IMCs are recognised as the most decisive factor in welding steel to aluminium, while Zn vapours significantly impact welding in a zero part-to-part gap overlap configuration. A 3D finite element method thermal model was employed to correlate the thermal cycles to the metallurgical and mechanical properties. The cooling rate without beam oscillation increased by 34% switching from passive to active cooling, while it was only 2.5% with oscillation present (2.5 mm lateral oscillation). Results revealed that active cooling influences Zn vapours and IMCs differently; faster cooling reduced total IMCs and Fe<sub>2</sub>Al<sub>5</sub> phase and increased joint strength; however, it exacerbated spattering and weld discontinuity due to insufficient time for outgassing the Zn vapours from the molten pool. This adverse effect was more pronounced with beam oscillation due to larger molten pool. The experimental work also showed that despite beam oscillation does enlarge the connection area, the average shear stress was relatively lower compared to the case without oscillation, attributed to the increased thickness of the IMCs. Active cooling with water flow at 10 °C achieved 60% joint efficiency compared to parent aluminium, while beam oscillation reduced this to 54% but with half the strength variation. This highlights the complex, non-linear interplay between IMC formation, Zn vapour outgassing, and the dynamics of the molten pool.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100290"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using a continuous wave (CW) laser with beam oscillation, this study elucidates the impact of passive and active cooling on welding hot-dip galvanised steel-to-aluminium sheets. The work investigates how cooling affects the formation of intermetallic compounds (IMCs) and the behaviour of Zn vapours, both of which are critical factors to the joint strength. IMCs are recognised as the most decisive factor in welding steel to aluminium, while Zn vapours significantly impact welding in a zero part-to-part gap overlap configuration. A 3D finite element method thermal model was employed to correlate the thermal cycles to the metallurgical and mechanical properties. The cooling rate without beam oscillation increased by 34% switching from passive to active cooling, while it was only 2.5% with oscillation present (2.5 mm lateral oscillation). Results revealed that active cooling influences Zn vapours and IMCs differently; faster cooling reduced total IMCs and Fe2Al5 phase and increased joint strength; however, it exacerbated spattering and weld discontinuity due to insufficient time for outgassing the Zn vapours from the molten pool. This adverse effect was more pronounced with beam oscillation due to larger molten pool. The experimental work also showed that despite beam oscillation does enlarge the connection area, the average shear stress was relatively lower compared to the case without oscillation, attributed to the increased thickness of the IMCs. Active cooling with water flow at 10 °C achieved 60% joint efficiency compared to parent aluminium, while beam oscillation reduced this to 54% but with half the strength variation. This highlights the complex, non-linear interplay between IMC formation, Zn vapour outgassing, and the dynamics of the molten pool.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信