Deep graph embedding based on Laplacian eigenmaps for MR fingerprinting reconstruction

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Peng Li, Yue Hu
{"title":"Deep graph embedding based on Laplacian eigenmaps for MR fingerprinting reconstruction","authors":"Peng Li,&nbsp;Yue Hu","doi":"10.1016/j.media.2025.103481","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic resonance fingerprinting (MRF) is a promising technique for fast quantitative imaging of multiple tissue parameters. However, the highly undersampled schemes utilized in MRF typically lead to noticeable aliasing artifacts in reconstructed images. Existing model-based methods can mitigate aliasing artifacts and enhance reconstruction quality but suffer from long reconstruction times. In addition, data priors used in these methods, such as low-rank and total variation, make it challenging to incorporate non-local and non-linear redundancies in MRF data. Furthermore, existing deep learning-based methods for MRF often lack interpretability and struggle with the high computational overhead caused by the high dimensionality of MRF data. To address these issues, we introduce a novel deep graph embedding framework based on the Laplacian eigenmaps for improved MRF reconstruction. Our work first models the acquired high-dimensional MRF data and the corresponding parameter maps as graph data nodes. Then, we propose an MRF reconstruction framework based on the graph embedding framework, retaining intrinsic graph structures between parameter maps and MRF data. To improve the accuracy of the estimated graph structure and the computational efficiency of the proposed framework, we unroll the iterative optimization process into a deep neural network, incorporating a learned graph embedding module to adaptively learn the Laplacian eigenmaps. By introducing the graph embedding framework into the MRF reconstruction, the proposed method can effectively exploit non-local and non-linear correlations in MRF data. Numerical experiments demonstrate that our approach can reconstruct high-quality MRF data and multiple parameter maps within a significantly reduced computational cost.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103481"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000295","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance fingerprinting (MRF) is a promising technique for fast quantitative imaging of multiple tissue parameters. However, the highly undersampled schemes utilized in MRF typically lead to noticeable aliasing artifacts in reconstructed images. Existing model-based methods can mitigate aliasing artifacts and enhance reconstruction quality but suffer from long reconstruction times. In addition, data priors used in these methods, such as low-rank and total variation, make it challenging to incorporate non-local and non-linear redundancies in MRF data. Furthermore, existing deep learning-based methods for MRF often lack interpretability and struggle with the high computational overhead caused by the high dimensionality of MRF data. To address these issues, we introduce a novel deep graph embedding framework based on the Laplacian eigenmaps for improved MRF reconstruction. Our work first models the acquired high-dimensional MRF data and the corresponding parameter maps as graph data nodes. Then, we propose an MRF reconstruction framework based on the graph embedding framework, retaining intrinsic graph structures between parameter maps and MRF data. To improve the accuracy of the estimated graph structure and the computational efficiency of the proposed framework, we unroll the iterative optimization process into a deep neural network, incorporating a learned graph embedding module to adaptively learn the Laplacian eigenmaps. By introducing the graph embedding framework into the MRF reconstruction, the proposed method can effectively exploit non-local and non-linear correlations in MRF data. Numerical experiments demonstrate that our approach can reconstruct high-quality MRF data and multiple parameter maps within a significantly reduced computational cost.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信