André L. Lira , Ting Liu , Joseph E. Aslan , Cristina Puy , Owen J.T. McCarty
{"title":"Lipopolysaccharide supramolecular organization regulates the activation of coagulation factor XII","authors":"André L. Lira , Ting Liu , Joseph E. Aslan , Cristina Puy , Owen J.T. McCarty","doi":"10.1016/j.bbamem.2025.184415","DOIUrl":null,"url":null,"abstract":"<div><div>Lipopolysaccharides (LPS) are key bacterial membrane components that activate coagulation factor XII (FXII), establishing a critical link between bacterial infections, blood coagulation, and inflammation. This study investigates how the supramolecular organization of LPS—monomers, micelles, and bilayers—affects FXII activation. We demonstrate that LPS micelles uniquely activate FXII to its enzymatic form (FXIIa), while monomeric LPS modulates FXIIa activity without direct activation, and bilayer-form LPS does not induce FXII activation. The addition of calcium ions (Ca<sup>2+</sup>) promoted the formation of bilayers by binding to the negatively charged phosphate groups of LPS, reducing electrostatic repulsion and stabilizing LPS aggregates, potentially leading to a shift in their net charge. These findings highlight the pivotal role of LPS supramolecular structure in modulating FXII activity, providing mechanistic insights into the interplay between bacterial components and the coagulation cascade.</div></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1867 3","pages":"Article 184415"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273625000094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipopolysaccharides (LPS) are key bacterial membrane components that activate coagulation factor XII (FXII), establishing a critical link between bacterial infections, blood coagulation, and inflammation. This study investigates how the supramolecular organization of LPS—monomers, micelles, and bilayers—affects FXII activation. We demonstrate that LPS micelles uniquely activate FXII to its enzymatic form (FXIIa), while monomeric LPS modulates FXIIa activity without direct activation, and bilayer-form LPS does not induce FXII activation. The addition of calcium ions (Ca2+) promoted the formation of bilayers by binding to the negatively charged phosphate groups of LPS, reducing electrostatic repulsion and stabilizing LPS aggregates, potentially leading to a shift in their net charge. These findings highlight the pivotal role of LPS supramolecular structure in modulating FXII activity, providing mechanistic insights into the interplay between bacterial components and the coagulation cascade.
期刊介绍:
BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.