Lipopolysaccharide supramolecular organization regulates the activation of coagulation factor XII

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
André L. Lira , Ting Liu , Joseph E. Aslan , Cristina Puy , Owen J.T. McCarty
{"title":"Lipopolysaccharide supramolecular organization regulates the activation of coagulation factor XII","authors":"André L. Lira ,&nbsp;Ting Liu ,&nbsp;Joseph E. Aslan ,&nbsp;Cristina Puy ,&nbsp;Owen J.T. McCarty","doi":"10.1016/j.bbamem.2025.184415","DOIUrl":null,"url":null,"abstract":"<div><div>Lipopolysaccharides (LPS) are key bacterial membrane components that activate coagulation factor XII (FXII), establishing a critical link between bacterial infections, blood coagulation, and inflammation. This study investigates how the supramolecular organization of LPS—monomers, micelles, and bilayers—affects FXII activation. We demonstrate that LPS micelles uniquely activate FXII to its enzymatic form (FXIIa), while monomeric LPS modulates FXIIa activity without direct activation, and bilayer-form LPS does not induce FXII activation. The addition of calcium ions (Ca<sup>2+</sup>) promoted the formation of bilayers by binding to the negatively charged phosphate groups of LPS, reducing electrostatic repulsion and stabilizing LPS aggregates, potentially leading to a shift in their net charge. These findings highlight the pivotal role of LPS supramolecular structure in modulating FXII activity, providing mechanistic insights into the interplay between bacterial components and the coagulation cascade.</div></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1867 3","pages":"Article 184415"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273625000094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipopolysaccharides (LPS) are key bacterial membrane components that activate coagulation factor XII (FXII), establishing a critical link between bacterial infections, blood coagulation, and inflammation. This study investigates how the supramolecular organization of LPS—monomers, micelles, and bilayers—affects FXII activation. We demonstrate that LPS micelles uniquely activate FXII to its enzymatic form (FXIIa), while monomeric LPS modulates FXIIa activity without direct activation, and bilayer-form LPS does not induce FXII activation. The addition of calcium ions (Ca2+) promoted the formation of bilayers by binding to the negatively charged phosphate groups of LPS, reducing electrostatic repulsion and stabilizing LPS aggregates, potentially leading to a shift in their net charge. These findings highlight the pivotal role of LPS supramolecular structure in modulating FXII activity, providing mechanistic insights into the interplay between bacterial components and the coagulation cascade.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochimica et biophysica acta. Biomembranes
Biochimica et biophysica acta. Biomembranes 生物-生化与分子生物学
CiteScore
8.20
自引率
5.90%
发文量
175
审稿时长
2.3 months
期刊介绍: BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信