Asymptotic normality and Cramér-type moderate deviations of Yule’s nonsense correlation statistic for Ornstein–Uhlenbeck processes

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Jingying Zhou , Hui Jiang , Weigang Wang
{"title":"Asymptotic normality and Cramér-type moderate deviations of Yule’s nonsense correlation statistic for Ornstein–Uhlenbeck processes","authors":"Jingying Zhou ,&nbsp;Hui Jiang ,&nbsp;Weigang Wang","doi":"10.1016/j.jspi.2025.106275","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, under discrete observations, we study the asymptotic consistency, asymptotic normality and Cramér-type moderate deviations of Yule’s nonsense correlation statistic for two Ornstein–Uhlenbeck processes. As applications, the global and local powers of the hypothesis testing for the independence between two Ornstein–Uhlenbeck processes are shown to approach one at exponential rates. Simulation experiments are conducted to confirm the theoretical results. Moreover, empirical applications illustrate the usefulness of the above mentioned statistic and the asymptotic theory. The main methods consist of the deviation inequalities and Cramér-type moderate deviations for multiple Wiener–Itô integrals and asymptotic analysis techniques.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"238 ","pages":"Article 106275"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000138","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, under discrete observations, we study the asymptotic consistency, asymptotic normality and Cramér-type moderate deviations of Yule’s nonsense correlation statistic for two Ornstein–Uhlenbeck processes. As applications, the global and local powers of the hypothesis testing for the independence between two Ornstein–Uhlenbeck processes are shown to approach one at exponential rates. Simulation experiments are conducted to confirm the theoretical results. Moreover, empirical applications illustrate the usefulness of the above mentioned statistic and the asymptotic theory. The main methods consist of the deviation inequalities and Cramér-type moderate deviations for multiple Wiener–Itô integrals and asymptotic analysis techniques.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信