On time-varying panel data models with time-varying interactive fixed effects

IF 9.9 3区 经济学 Q1 ECONOMICS
Xia Wang , Sainan Jin , Yingxing Li , Junhui Qian , Liangjun Su
{"title":"On time-varying panel data models with time-varying interactive fixed effects","authors":"Xia Wang ,&nbsp;Sainan Jin ,&nbsp;Yingxing Li ,&nbsp;Junhui Qian ,&nbsp;Liangjun Su","doi":"10.1016/j.jeconom.2025.105960","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a time-varying (TV) panel data model with interactive fixed effects where both the coefficients and factor loadings are allowed to change smoothly over time. We propose a local version of the least squares and principal component method to estimate the TV coefficients, TV factor loadings, and common factors simultaneously. We provide a bias-corrected local least squares estimator for the TV coefficients and establish the limiting distributions and uniform convergence of the bias-corrected coefficient estimators, estimated factors, and factor loadings in the large <span><math><mi>N</mi></math></span> and large <span><math><mi>T</mi></math></span> framework. Based on the estimates, we propose three test statistics to gauge possible sources of TV features. We establish the limit null distributions and the asymptotic local power properties of our tests. Simulations are conducted to evaluate the finite sample performance of our estimates and tests. We apply our theoretical results to analyze the Phillips curve using the U.S. state-level unemployment rates and nominal wages, and document significant TV behavior in both the slope coefficient and factor loadings.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105960"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000144","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a time-varying (TV) panel data model with interactive fixed effects where both the coefficients and factor loadings are allowed to change smoothly over time. We propose a local version of the least squares and principal component method to estimate the TV coefficients, TV factor loadings, and common factors simultaneously. We provide a bias-corrected local least squares estimator for the TV coefficients and establish the limiting distributions and uniform convergence of the bias-corrected coefficient estimators, estimated factors, and factor loadings in the large N and large T framework. Based on the estimates, we propose three test statistics to gauge possible sources of TV features. We establish the limit null distributions and the asymptotic local power properties of our tests. Simulations are conducted to evaluate the finite sample performance of our estimates and tests. We apply our theoretical results to analyze the Phillips curve using the U.S. state-level unemployment rates and nominal wages, and document significant TV behavior in both the slope coefficient and factor loadings.
具有时变交互固定效应的时变面板数据模型
本文介绍了一种具有交互固定效应的时变(TV)面板数据模型,其中系数和因子负载都允许随时间平滑变化。我们提出了一种局部版本的最小二乘和主成分方法来同时估计电视系数、电视因子负荷和公共因子。我们为TV系数提供了一个偏置校正的局部最小二乘估计量,并建立了在大N和大T框架下偏置校正系数估计量、估计因子和因子负载的极限分布和均匀收敛性。在此基础上,我们提出了三个测试统计量来衡量电视特征的可能来源。我们建立了检验的极限零分布和渐近局部幂性质。通过仿真来评估我们的估计和测试的有限样本性能。我们运用我们的理论结果来分析菲利普斯曲线,使用美国各州的失业率和名义工资,并在斜率系数和因素负荷中记录了显著的电视行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信