Enhanced industrial heat load forecasting in district networks via a multi-scale fusion ensemble deep learning

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhiqiang Chen , Yu Yang , Chundi Jiang , Yi Chen , Hao Yu , Chunguang Zhou , Chuan Li
{"title":"Enhanced industrial heat load forecasting in district networks via a multi-scale fusion ensemble deep learning","authors":"Zhiqiang Chen ,&nbsp;Yu Yang ,&nbsp;Chundi Jiang ,&nbsp;Yi Chen ,&nbsp;Hao Yu ,&nbsp;Chunguang Zhou ,&nbsp;Chuan Li","doi":"10.1016/j.eswa.2025.126783","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate heating load prediction is vital for optimizing the operation of thermal systems, improving energy utilization efficiency, reducing operational costs, enhancing user satisfaction, and promoting the use of renewable energy. To facilitate short-term prediction of heat consumption in industrial areas for practical applications, a multi-scale fusion ensemble model is proposed to address the issue of pressure balance in heating networks. Specifically, (1) Hierarchical Decomposition Approach: To overcome the limitation of relying solely on historical heat load data, a hierarchical decomposition mode is designed by combining Naïve Decomposition, Empirical Mode Decomposition, and Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise. This approach deeply explores the nonlinear characteristics of the heat load. (2) Integrated Heat Load Prediction Framework: An integrated prediction framework based on neural networks—including Back Propagation Networks, Recurrent Neural Networks, Long Short-Term Memory Networks, and Gated Recurrent Unit Networks is constructed. For each component, the optimal prediction model is adaptively selected, and the predicted results are fused using weighted averages. The proposed scheme was applied to 24-hour ahead heating load prediction for four regions of a thermal power company in Quzhou City, Zhejiang Province. The coefficients of determination R<sup>2</sup> achieved for the four regions were 0.8646, 0.8707, 0.8509, and 0.9422, respectively, with Mean Absolute Percentage Errors reaching 10.18%, 3.93%, 2.78%, and 2.31%. Compared with seven classical prediction models, as well as Transformer and its variants, the proposed model outperforms them across five performance indicators and demonstrates strong generalization ability.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"272 ","pages":"Article 126783"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425004051","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate heating load prediction is vital for optimizing the operation of thermal systems, improving energy utilization efficiency, reducing operational costs, enhancing user satisfaction, and promoting the use of renewable energy. To facilitate short-term prediction of heat consumption in industrial areas for practical applications, a multi-scale fusion ensemble model is proposed to address the issue of pressure balance in heating networks. Specifically, (1) Hierarchical Decomposition Approach: To overcome the limitation of relying solely on historical heat load data, a hierarchical decomposition mode is designed by combining Naïve Decomposition, Empirical Mode Decomposition, and Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise. This approach deeply explores the nonlinear characteristics of the heat load. (2) Integrated Heat Load Prediction Framework: An integrated prediction framework based on neural networks—including Back Propagation Networks, Recurrent Neural Networks, Long Short-Term Memory Networks, and Gated Recurrent Unit Networks is constructed. For each component, the optimal prediction model is adaptively selected, and the predicted results are fused using weighted averages. The proposed scheme was applied to 24-hour ahead heating load prediction for four regions of a thermal power company in Quzhou City, Zhejiang Province. The coefficients of determination R2 achieved for the four regions were 0.8646, 0.8707, 0.8509, and 0.9422, respectively, with Mean Absolute Percentage Errors reaching 10.18%, 3.93%, 2.78%, and 2.31%. Compared with seven classical prediction models, as well as Transformer and its variants, the proposed model outperforms them across five performance indicators and demonstrates strong generalization ability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信