D.M. Anisuzzaman PhD, Jeffrey G. Malins PhD, John I. Jackson PhD, Eunjung Lee PhD, Jwan A. Naser MBBS, Behrouz Rostami PhD, Grace Greason BA, Jared G. Bird MD, Paul A. Friedman MD, Jae K. Oh MD, Patricia A. Pellikka MD, Jeremy J. Thaden MD, Francisco Lopez-Jimenez MD, MSc, MBA, Zachi I. Attia PhD, Sorin V. Pislaru MD, PhD, Garvan C. Kane MD, PhD
{"title":"Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound","authors":"D.M. Anisuzzaman PhD, Jeffrey G. Malins PhD, John I. Jackson PhD, Eunjung Lee PhD, Jwan A. Naser MBBS, Behrouz Rostami PhD, Grace Greason BA, Jared G. Bird MD, Paul A. Friedman MD, Jae K. Oh MD, Patricia A. Pellikka MD, Jeremy J. Thaden MD, Francisco Lopez-Jimenez MD, MSc, MBA, Zachi I. Attia PhD, Sorin V. Pislaru MD, PhD, Garvan C. Kane MD, PhD","doi":"10.1016/j.mcpdig.2025.100194","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop a fully end-to-end deep learning framework capable of estimating left ventricular ejection fraction (LVEF), estimating patient age, and classifying patient sex from echocardiographic videos, including videos collected using handheld cardiac ultrasound (HCU).</div></div><div><h3>Patients and Methods</h3><div>Deep learning models were trained using retrospective transthoracic echocardiography (TTE) data collected in Mayo Clinic Rochester and surrounding Mayo Clinic Health System sites (training: 6432 studies and internal validation: 1369 studies). Models were then evaluated using retrospective TTE data from the 3 Mayo Clinic sites (Rochester, n=1970; Arizona, n=1367; Florida, n=1562) before being applied to a prospective dataset of handheld ultrasound and TTE videos collected from 625 patients. Study data were collected between January 1, 2018 and February 29, 2024.</div></div><div><h3>Results</h3><div>Models showed strong performance on the retrospective TTE datasets (LVEF regression: root mean squared error (RMSE)=6.83%, 6.53%, and 6.95% for Rochester, Arizona, and Florida cohorts, respectively; classification of LVEF ≤40% versus LVEF > 40%: area under curve (AUC)=0.962, 0.967, and 0.980 for Rochester, Arizona, and Florida, respectively; age: RMSE=9.44% for Rochester; sex: AUC=0.882 for Rochester), and performed comparably for prospective HCU versus TTE data (LVEF regression: RMSE=6.37% for HCU vs 5.57% for TTE; LVEF classification: AUC=0.974 vs 0.981; age: RMSE=10.35% vs 9.32%; sex: AUC=0.896 vs 0.933).</div></div><div><h3>Conclusion</h3><div>Robust TTE datasets can be used to effectively power HCU deep learning models, which in turn demonstrates focused diagnostic images can be obtained with handheld devices.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"3 1","pages":"Article 100194"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294976122500001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To develop a fully end-to-end deep learning framework capable of estimating left ventricular ejection fraction (LVEF), estimating patient age, and classifying patient sex from echocardiographic videos, including videos collected using handheld cardiac ultrasound (HCU).
Patients and Methods
Deep learning models were trained using retrospective transthoracic echocardiography (TTE) data collected in Mayo Clinic Rochester and surrounding Mayo Clinic Health System sites (training: 6432 studies and internal validation: 1369 studies). Models were then evaluated using retrospective TTE data from the 3 Mayo Clinic sites (Rochester, n=1970; Arizona, n=1367; Florida, n=1562) before being applied to a prospective dataset of handheld ultrasound and TTE videos collected from 625 patients. Study data were collected between January 1, 2018 and February 29, 2024.
Results
Models showed strong performance on the retrospective TTE datasets (LVEF regression: root mean squared error (RMSE)=6.83%, 6.53%, and 6.95% for Rochester, Arizona, and Florida cohorts, respectively; classification of LVEF ≤40% versus LVEF > 40%: area under curve (AUC)=0.962, 0.967, and 0.980 for Rochester, Arizona, and Florida, respectively; age: RMSE=9.44% for Rochester; sex: AUC=0.882 for Rochester), and performed comparably for prospective HCU versus TTE data (LVEF regression: RMSE=6.37% for HCU vs 5.57% for TTE; LVEF classification: AUC=0.974 vs 0.981; age: RMSE=10.35% vs 9.32%; sex: AUC=0.896 vs 0.933).
Conclusion
Robust TTE datasets can be used to effectively power HCU deep learning models, which in turn demonstrates focused diagnostic images can be obtained with handheld devices.
目的开发一个完全端到端深度学习框架,能够从超声心动图视频中估计左室射血分数(LVEF)、估计患者年龄和分类患者性别,包括使用手持式心脏超声(HCU)收集的视频。患者和方法使用Mayo Clinic Rochester和周边Mayo Clinic Health System站点收集的回顾性经胸超声心动图(TTE)数据对深度学习模型进行训练(训练:6432项研究,内部验证:1369项研究)。然后使用来自3个Mayo诊所的回顾性TTE数据对模型进行评估(Rochester, n=1970;亚利桑那州,n = 1367;佛罗里达州,n=1562),然后应用于从625名患者收集的手持式超声和TTE视频的前瞻性数据集。研究数据收集于2018年1月1日至2024年2月29日。结果模型在回顾性TTE数据集上表现良好(LVEF回归:罗切斯特、亚利桑那州和佛罗里达州队列的均方根误差(RMSE)分别为6.83%、6.53%和6.95%;LVEF≤40%与LVEF >的分类;40%:曲线下面积(AUC)分别为0.962、0.967和0.980,罗切斯特、亚利桑那州和佛罗里达州;年龄:罗切斯特的RMSE=9.44%;性别:罗切斯特的AUC=0.882),并且在HCU和TTE的前瞻性数据中表现相当(LVEF回归:HCU的RMSE=6.37%, TTE的RMSE= 5.57%;LVEF分类:AUC=0.974 vs 0.981;年龄:RMSE=10.35% vs 9.32%;性别:AUC=0.896 vs 0.933)。结论强大的TTE数据集可以有效地为HCU深度学习模型提供支持,这反过来又证明了手持设备可以获得聚焦诊断图像。