{"title":"Solving change of basis from Bernstein to Chebyshev polynomials","authors":"D.A. Wolfram","doi":"10.1016/j.exco.2025.100178","DOIUrl":null,"url":null,"abstract":"<div><div>We provide two closed-form solutions to the change of basis from Bernstein polynomials to shifted Chebyshev polynomials of the fourth kind and show them to be equivalent by applying Zeilberger’s algorithm. The first solution uses orthogonality properties of the Chebyshev polynomials. The second is “modular” which enables separately verified sub-problems to be composed and re-used in other basis transformations. These results have applications in change of basis of orthogonal, and non-orthogonal polynomials.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"7 ","pages":"Article 100178"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X25000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We provide two closed-form solutions to the change of basis from Bernstein polynomials to shifted Chebyshev polynomials of the fourth kind and show them to be equivalent by applying Zeilberger’s algorithm. The first solution uses orthogonality properties of the Chebyshev polynomials. The second is “modular” which enables separately verified sub-problems to be composed and re-used in other basis transformations. These results have applications in change of basis of orthogonal, and non-orthogonal polynomials.